43 research outputs found

    FKBP65-dependent peptidyl-prolyl isomerase activity potentiates the lysyl hydroxylase 2-driven collagen cross-link switch

    Get PDF
    Bruck Syndrome is a connective tissue disease associated with inactivating mutations in lysyl hydroxylase 2 (LH2/PLOD2) or FK506 binding protein 65 (FKBP65/FKBP10). However, the functional relationship between LH2 and FKBP65 remains unclear. Here, we postulated that peptidyl prolyl isomerase (PPIase) activity of FKBP65 positively modulates LH2 enzymatic activity and is critical for the formation of hydroxylysine-aldehyde derived intermolecular collagen cross-links (HLCCs). To test this hypothesis, we analyzed collagen cross-links in Fkbp10-null and –wild-type murine embryonic fibroblasts. Although LH2 protein levels did not change, FKBP65 deficiency significantly diminished HLCCs and increased the non-hydroxylated lysine-aldehyde–derived collagen cross-links (LCCs), a pattern consistent with loss of LH2 enzymatic activity. The HLCC-to-LCC ratio was rescued in FKBP65-deficient murine embryonic fibroblasts by reconstitution with wild-type but not mutant FKBP65 that lacks intact PPIase domains. Findings from co-immunoprecipitation, protein-fragment complementation, and co-immunofluorescence assays showed that LH2 and FKBP65 are part of a common protein complex. We conclude that FKBP65 regulates LH2-mediated collagen cross-linking. Because LH2 promotes fibrosis and cancer metastasis, our findings suggest that pharmacologic strategies to target FKBP65 and LH2 may have complementary therapeutic activities

    Effects of fish collagen peptides on collagen post-translational modifications and mineralization in an osteoblastic cell culture system

    Get PDF
    Collagen is one of the most widely used biomaterials for tissue engineering and regenerative medicine. Fish collagen peptides (FCP) have been used as a dietary supplement, but their effects on the cellular function are still poorly understood. The objective of this study was to investigate the effects of FCP on collagen synthesis, quality and mineralization using an osteoblastic MC3T3-E1 cell culture system. Cells treated with FCP significantly upregulated the gene expression of several collagen modifying enzymes and more collagen was deposited in the cultures. Collagen in the treated group showed a greater extent of lysine hydroxylation, higher levels of hydroxylysine-aldehyde derived cross-links and accelerated cross-link maturation compared with the untreated group. Furthermore, the treated group showed accelerated matrix mineralization. These results indicate that FCP exerts a positive effect on osteoblastic cells in terms of collagen synthesis, quality and mineralization, thereby suggesting the potential utility of FCP for bone tissue engineering

    Alfacalcidol enhances collagen quality in ovariectomized rat bones: VITAMIN D IMPROVES BONE COLLAGEN QUALITY

    Get PDF
    The aim of this study was to investigate the effects of alfacalcidol (1α(OH)D3 : ALF) on bone collagen employing an ovariectomized rat model. Thirty-five 16-week-old female Sprague-Dawley rats were divided into five groups: SHAM (sham-operated + vehicle), OVX (ovariectomy + vehicle), and three ALF-treated groups, that is, ovariectomy + 0.022 µg/kg/day ALF, ovariectomy + 0.067 µg/kg/day ALF, and ovariectomy + 0.2 µg/kg/day ALF. After 12 weeks of treatment, tibiae were subjected to histological, biochemical and immunohistochemical analyses. Collagen matrices in OVX bone appeared as immature and poorly organized; however, with the ALF treatment, it was improved in a dose-dependent manner. Contents of collagen and pyridinoline cross-link were decreased in OVX compared with SHAM, but they increased to the level comparable to SHAM in ALF-treated groups. The total aldehyde, that is, a sum of free and those involved cross-links, in the highest dose of ALF was significantly higher than the rest of the groups (p < 0.05). In addition, the expression of lysyl oxidase was increased in the all ALF-treated groups compared with OVX (p < 0.05). In conclusion, ALF increases not only the amount of collagen but also enhances the maturation of collagen in ovariectomy-induced osteoporotic bones, which likely contributes to the improvement of bone quality

    Alfacalcidol enhances collagen quality in ovariectomized rat bones

    Get PDF
    The aim of this study was to investigate the effects of alfacalcidol (1α(OH)D3: ALF) on bone collagen employing an ovariectomized rat model. Thirty-five 16-week-old female Sprague-Dawley rats were divided into five groups: SHAM (sham-operated-+-vehicle), OVX (ovariectomy-+-vehicle), and three ALF-treated groups, that is, ovariectomy-+-0.022-μg/kg/day ALF, ovariectomy-+-0.067-μg/kg/day ALF, and ovariectomy-+-0.2-μg/kg/day ALF. After 12 weeks of treatment, tibiae were subjected to histological, biochemical and immunohistochemical analyses. Collagen matrices in OVX bone appeared as immature and poorly organized; however, with the ALF treatment, it was improved in a dose-dependent manner. Contents of collagen and pyridinoline cross-link were decreased in OVX compared with SHAM, but they increased to the level comparable to SHAM in ALF-treated groups. The total aldehyde, that is, a sum of free and those involved cross-links, in the highest dose of ALF was significantly higher than the rest of the groups (p-<-0.05). In addition, the expression of lysyl oxidase was increased in the all ALF-treated groups compared with OVX (p-<-0.05). In conclusion, ALF increases not only the amount of collagen but also enhances the maturation of collagen in ovariectomy-induced osteoporotic bones, which likely contributes to the improvement of bone quality

    Deletion of BMP receptor type IB decreased bone mass in association with compromised osteoblastic differentiation of bone marrow mesenchymal progenitors

    Get PDF
    We previously found that disruption of two type I BMP receptors, Bmpr1a and Acvr1, respectively, in an osteoblast-specific manner, increased bone mass in mice. BMPR1B, another BMP type I receptor, is also capable of binding to BMP ligands and transduce BMP signaling. However, little is known about the function of BMPR1B in bone. In this study, we investigated the bone phenotype in Bmpr1b null mice and the impacts of loss of Bmpr1b on osteoblasts and osteoclasts. We found that deletion of Bmpr1b resulted in osteopenia in 8-week-old male mice, and the phenotype was transient and gender specific. The decreased bone mass was neither due to the changes in osteoblastic bone formation activity nor osteoclastic bone resorption activity in vivo. In vitro differentiation of Bmpr1b null osteoclasts was increased but resorption activity was decreased. Calvarial pre-osteoblasts from Bmpr1b mutant showed comparable differentiation capability in vitro, while they showed increased BMP-SMAD signaling in culture. Different from calvarial pre-osteoblasts, Bmpr1b mutant bone marrow mesenchymal progenitors showed compromised differentiation in vitro, which may be a reason for the osteopenic phenotype in the mutant mice. In conclusion, our results suggested that BMPR1B plays distinct roles from BMPR1A and ACVR1 in maintaining bone mass and transducing BMP signaling

    Glycosylation and Cross-linking in Bone Type I Collagen

    Get PDF
    Fibrillar type I collagen is the major organic component in bone, providing a stable template for mineralization. During collagen biosynthesis, specific hydroxylysine residues become glycosylated in the form of galactosyl- and glucosylgalactosyl-hydroxylysine. Furthermore, key glycosylated hydroxylysine residues, α1/2-87, are involved in covalent intermolecular cross-linking. Although cross-linking is crucial for the stability and mineralization of collagen, the biological function of glycosylation in cross-linking is not well understood. In this study, we quantitatively characterized glycosylation of non-cross-linked and cross-linked peptides by biochemical and nanoscale liquid chromatography-high resolution tandem mass spectrometric analyses. The results showed that glycosylation of non-cross-linked hydroxylysine is different from that involved in cross-linking. Among the cross-linked species involving α1/2-87, divalent cross-links were glycosylated with both mono- and disaccharides, whereas the mature, trivalent cross-links were primarily monoglycosylated. Markedly diminished diglycosylation in trivalent cross-links at this locus was also confirmed in type II collagen. The data, together with our recent report (Sricholpech, M., Perdivara, I., Yokoyama, M., Nagaoka, H., Terajima, M., Tomer, K. B., and Yamauchi, M. (2012) Lysyl hydroxylase 3-mediated glucosylation in type I collagen: molecular loci and biological significance. J. Biol. Chem. 287, 22998–23009), indicate that the extent and pattern of glycosylation may regulate cross-link maturation in fibrillar collagen

    Unusual Fragmentation Pathways in Collagen Glycopeptides

    Get PDF
    Collagens are the most abundant glycoproteins in the body. One characteristic of this protein family is that the amino acid sequence consists of repeats of three amino acids –(X—Y—Gly)n. Within this motif, the Y residue is often 4-hydroxyproline (HyP) or 5-hydroxylysine (HyK). Glycosylation in collagen occurs at the 5-OH group in HyK in the form of two glycosides, galactosylhydroxylysine (Gal-HyK) and glucosyl galactosylhydroxylysine (GlcGal-HyK). In collision induced dissociation (CID), collagen tryptic glycopeptides exhibit unexpected gas-phase dissociation behavior compared to typical N- and O-linked glycopeptides, i.e. in addition to glycosidic bond cleavages, extensive cleavages of the amide bonds are observed. The Gal- or GlcGal- glycan modifications are largely retained on the fragment ions. These features enable unambiguous determination of the amino acid sequence of collagen glycopeptides and the location of the glycosylation site. This dissociation pattern was consistent for all analyzed collagen glycopeptides, regardless of their length or amino acid composition, collagen type or tissue. The two fragmentation pathways – amide bond and glycosidic bond cleavage – are highly competitive in collagen tryptic glycopeptides. The number of ionizing protons relative to the number of basic sites (i.e. Arg, Lys, HyK and N-terminus) is a major driving force of the fragmentation. We present here our experimental results and employ quantum mechanics calculations, to understand the factors enhancing the labile character of the amide bonds and the stability of hydroxylysine glycosides in gas phase dissociation of collagen glycopeptides

    Lysyl Hydroxylase 3-mediated Glucosylation in Type I Collagen: MOLECULAR LOCI AND BIOLOGICAL SIGNIFICANCE

    Get PDF
    Recently, by employing the short hairpin RNA technology, we have generated MC3T3-E1 (MC)-derived clones stably suppressing lysyl hydroxylase 3 (LH3) (short hairpin (Sh) clones) and demonstrated the LH3 function as glucosyltransferase in type I collagen (Sricholpech, M., Perdivara, I., Nagaoka, H., Yokoyama, M., Tomer, K. B., and Yamauchi, M. (2011) Lysyl hydroxylase 3 glucosylates galactosylhydroxylysine residues in type I collagen in osteoblast culture. J. Biol. Chem. 286, 8846–8856). To further elucidate the biological significance of this modification, we characterized and compared type I collagen phenotypes produced by Sh clones and two control groups, MC and those transfected with empty vector. Mass spectrometric analysis identified five glycosylation sites in type I collagen (i.e. α1,2-87, α1,2-174, and α2-219. Of these, the predominant glycosylation site was α1-87, one of the major helical cross-linking sites. In Sh collagen, the abundance of glucosylgalactosylhydroxylysine was significantly decreased at all of the five sites with a concomitant increase in galactosylhydroxylysine at four of these sites. The collagen cross-links were significantly diminished in Sh clones, and, for the major cross-link, dihydroxylysinonorleucine (DHLNL), glucosylgalactosyl-DHLNL was diminished with a concomitant increase in galactosyl-DHLNL. When subjected to in vitro incubation, in Sh clones, the rate of decrease in DHLNL was lower, whereas the rate of increase in its maturational cross-link, pyridinoline, was comparable with controls. Furthermore, in Sh clones, the mean diameters of collagen fibrils were significantly larger, and the onset of mineralized nodule formation was delayed when compared with those of controls. These results indicate that the LH3-mediated glucosylation occurs at the specific molecular loci in the type I collagen molecule and plays critical roles in controlling collagen cross-linking, fibrillogenesis, and mineralization

    Temporal Changes in Collagen Cross-Links in Spontaneous Articular Cartilage Repair

    Get PDF
    Objective: Little is known about how the biochemical properties of collagen change during tissue regeneration following cartilage damage. In the current study, temporal changes in cartilage repair tissue biochemistry were assessed in a rabbit osteochondral defect. Design: Bilateral full-thickness 3-mm osteochondral trochlear groove defects were created in 54 adult male skeletally mature New Zealand white rabbits, and tissue repair was monitored over 16 weeks. Collagen content, cross-links, lysyl hydroxylation, gene expression, histological grading, and Fourier transform infrared analyses were performed at 2, 4, 6, 8, 12, and 16 weeks. Results: Defect fill occurred at ~4 weeks postinjury; however, histological grading showed that the repair tissue never became normal, primarily due to the presence of fibrocartilage. Gene expression levels of Col1a1 and Col IIaI were higher in the defect compared with adjacent regions. Collagen content in the repair tissue reached the level of normal cartilage at 6 weeks, but it took 12 weeks for the extent of lysine hydroxylation to return to normal. Divalent immature cross-links markedly increased in the early stages of repair. Though the levels gradually diminished thereafter, they never returned to the normal levels. The mature cross-link, pyridinoline, gradually increased with time and nearly reached normal levels by week 16. Infrared imaging data of protein content paralleled the biochemical data. However, collagen maturity, a parameter previously shown to reflect collagen cross-link ratios in bone, did not correlate with the biochemical determination of cross-links in the repair tissue. Conclusion: Collagen biochemical data could provide markers for clinical monitoring in a healing defect

    Cyclophilin-B Modulates Collagen Cross-linking by Differentially Affecting Lysine Hydroxylation in the Helical and Telopeptidyl Domains of Tendon Type I Collagen

    Get PDF
    Covalent intermolecular cross-linking provides collagen fibrils with stability. The cross-linking chemistry is tissue-specific and determined primarily by the state of lysine hydroxylation at specific sites. A recent study on cyclophilin B (CypB) null mice, a model of recessive osteogenesis imperfecta, demonstrated that lysine hydroxylation at the helical cross-linking site of bone type I collagen was diminished in these animals (Cabral, W. A., Perdivara, I., Weis, M., Terajima, M., Blissett, A. R., Chang, W., Perosky, J. E., Makareeva, E. N., Mertz, E. L., Leikin, S., Tomer, K. B., Kozloff, K. M., Eyre, D. R., Yamauchi, M., and Marini, J. C. (2014) PLoS Genet. 10, e1004465). However, the extent of decrease appears to be tissue- and molecular site-specific, the mechanism of which is unknown. Here we report that although CypB deficiency resulted in lower lysine hydroxylation in the helical cross-linking sites, it was increased in the telopeptide cross-linking sites in tendon type I collagen. This resulted in a decrease in the lysine aldehyde-derived cross-links but generation of hydroxylysine aldehyde-derived cross-links. The latter were absent from the wild type and heterozygous mice. Glycosylation of hydroxylysine residues was moderately increased in the CypB null tendon. We found that CypB interacted with all lysyl hydroxylase isoforms (isoforms 1–3) and a putative lysyl hydroxylase-2 chaperone, 65-kDa FK506-binding protein. Tendon collagen in CypB null mice showed severe size and organizational abnormalities. The data indicate that CypB modulates collagen cross-linking by differentially affecting lysine hydroxylation in a site-specific manner, possibly via its interaction with lysyl hydroxylases and associated molecules. This study underscores the critical importance of collagen post-translational modifications in connective tissue formation
    corecore