110 research outputs found

    Mammary gland tumor promotion by chronic administration of IGF1 and the insulin analogue AspB10 in the p53R270H/⁺WAPCre mouse model

    Get PDF
    Insulin analogues are structurally modified molecules with altered pharmaco-kinetic and -dynamic properties compared to regular human insulin used by diabetic patients. While these compounds are tested for undesired mitogenic effects, an epidemiological discussion is ongoing regarding an association between insulin analogue therapy and increased cancer incidence, including breast cancer. Standard in vivo rodent carcinogenesis assays do not pick up this possible increased carcinogenic potential. Here we studied the role of insulin analogues in breast cancer development. For this we used the human relevant mammary gland specific p53R270H/⁺WAPCre mouse model. Animals received life long repeated treatment with four different insulin (-like) molecules: normal insulin, insulin glargine, insulin X10 (AspB10) or insulin-like growth factor 1 (IGF1). Insulin-like molecules with strong mitogenic signaling, insulin X10 and IGF1, significantly decreased the time for tumor development. Yet, insulin glargine and normal insulin, did not significantly decrease the latency time for (mammary gland) tumor development. The majority of tumors had an epithelial to mesenchymal transition phenotype (EMT), irrespective of treatment condition. Enhanced extracellular signaling related kinase (Erk) or serine/threonine kinase (Akt) mitogenic signaling was in particular present in tumors from the insulin X10 and IGF1 treatment groups. These data indicate that insulin-like molecules with enhanced mitogenic signaling increase the risk of breast cancer development. Moreover, the use of a tissue specific cancer model, like the p53R270H/⁺WAPCre mouse model, is relevant to assess the intrinsic pro-carcinogenic potential of mitogenic and non-mitogenic biologicals such as insulin analogues. INTRODUCTION METHODS RESULTS CONCLUSION

    Mammary gland tumor promotion by chronic administration of IGF1 and the insulin analogue AspB10 in the p53(R270H/+)WAPCre mouse model

    Get PDF
    Insulin analogues are structurally modified molecules with altered pharmaco-kinetic and -dynamic properties compared to regular human insulin used by diabetic patients. While these compounds are tested for undesired mitogenic effects, an epidemiological discussion is ongoing regarding an association between insulin analogue therapy and increased cancer incidence, including breast cancer. Standard in vivo rodent carcinogenesis assays do not pick up this possible increased carcinogenic potential. Here we studied the role of insulin analogues in breast cancer development. For this we used the human relevant mammary gland specific p53R270H/⁺WAPCre mouse model. Animals received life long repeated treatment with four different insulin (-like) molecules: normal insulin, insulin glargine, insulin X10 (AspB10) or insulin-like growth factor 1 (IGF1). Insulin-like molecules with strong mitogenic signaling, insulin X10 and IGF1, significantly decreased the time for tumor development. Yet, insulin glargine and normal insulin, did not significantly decrease the latency time for (mammary gland) tumor development. The majority of tumors had an epithelial to mesenchymal transition phenotype (EMT), irrespective of treatment condition. Enhanced extracellular signaling related kinase (Erk) or serine/threonine kinase (Akt) mitogenic signaling was in particular present in tumors from the insulin X10 and IGF1 treatment groups. These data indicate that insulin-like molecules with enhanced mitogenic signaling increase the risk of breast cancer development. Moreover, the use of a tissue specific cancer model, like the p53R270H/⁺WAPCre mouse model, is relevant to assess the intrinsic pro-carcinogenic potential of mitogenic and non-mitogenic biologicals such as insulin analogues. INTRODUCTION METHODS RESULTS CONCLUSIONSToxicolog

    Cultivation of a Synergistetes strain representing a previously uncultivated lineage

    Get PDF
    Subgingival plaque samples obtained from human subjects with periodontitis, shown to include previously uncultivable members of the phylum Synergistetes, were used to inoculate Cooked Meat Medium (CMM). The presence of Cluster A (uncultivable) Synergistetes was monitored by fluorescent in situ hybridization (FISH) and quantitative PCR (Q-PCR). Cluster A Synergistetes were found to grow in CMM in co-culture with other plaque bacteria and growth was stimulated by the addition of mucin and serum. Plaque samples were also used to inoculate Blood Agar (BA) plates and growth of Cluster A Synergistetes was revealed after anaerobic incubation, by colony hybridization with specific probes. Surface growth on the plates in regions identified by colony hybridization was harvested and used to inoculate fresh plates, thus enriching for Cluster A Synergistetes. Cross-streaks of other plaque bacteria were also used to stimulate Synergistetes growth. In the early passages, no discrete Synergistetes colonies were seen, but after eight passages and the use of cross-streaks of other bacteria present in the enriched community, colonies arose, which consisted solely of Cluster A Synergistetes cells, as determined by 16S rRNA gene PCR and cloning. This is the first report of the successful culture of a member of the uncultivable branch of this phylum

    Responsible Innovation in Plant Breeding: The Case of Hybrid Potato Breeding: Plants

    Get PDF
    As an emerging innovation, hybrid potato breeding raises high expectations about faster variety development and clean true potato seed as a new source of planting material. Hybrid breeding could, therefore, substantially contribute to global food security and other major sustainable development goals. However, its success will not only depend on the performance of hybrid potato in the field, but also on a range of complex and dynamic system conditions. This article is based on a multidisciplinary project in which we have studied the innovation dynamics of hybrid potato breeding and explored how these dynamics may shape the future of hybrid potato. Inspired by the approach of responsible innovation, we closely involved key players in the Dutch and international potato sector and other relevant actors in thinking about these potato futures. An important and recurrent theme in our work is the tension between the predominant commercial innovation dynamics in plant breeding and promises to respond to the global challenges of food security, agrobiodiversity and climate change. In this article, we, therefore, discuss responsible innovation strategies in (hybrid) potato breeding, which may help to bridge this tension and finally reflect on the implications for the field of plant breeding in general

    Chemotherapy-induced oral mucositis is associated with detrimental bacterial dysbiosis.

    Get PDF
    BACKGROUND: Gastrointestinal mucosal injury (mucositis), commonly affecting the oral cavity, is a clinically significant yet incompletely understood complication of cancer chemotherapy. Although antineoplastic cytotoxicity constitutes the primary injury trigger, the interaction of oral microbial commensals with mucosal tissues could modify the response. It is not clear, however, whether chemotherapy and its associated treatments affect oral microbial communities disrupting the homeostatic balance between resident microorganisms and the adjacent mucosa and if such alterations are associated with mucositis. To gain knowledge on the pathophysiology of oral mucositis, 49 subjects receiving 5-fluorouracil (5-FU) or doxorubicin-based chemotherapy were evaluated longitudinally during one cycle, assessing clinical outcomes, bacterial and fungal oral microbiome changes, and epithelial transcriptome responses. As a control for microbiome stability, 30 non-cancer subjects were longitudinally assessed. Through complementary in vitro assays, we also evaluated the antibacterial potential of 5-FU on oral microorganisms and the interaction of commensals with oral epithelial tissues. RESULTS: Oral mucositis severity was associated with 5-FU, increased salivary flow, and higher oral granulocyte counts. The oral bacteriome was disrupted during chemotherapy and while antibiotic and acid inhibitor intake contributed to these changes, bacteriome disruptions were also correlated with antineoplastics and independently and strongly associated with oral mucositis severity. Mucositis-associated bacteriome shifts included depletion of common health-associated commensals from the genera Streptococcus, Actinomyces, Gemella, Granulicatella, and Veillonella and enrichment of Gram-negative bacteria such as Fusobacterium nucleatum and Prevotella oris. Shifts could not be explained by a direct antibacterial effect of 5-FU, but rather resembled the inflammation-associated dysbiotic shifts seen in other oral conditions. Epithelial transcriptional responses during chemotherapy included upregulation of genes involved in innate immunity and apoptosis. Using a multilayer epithelial construct, we show mucositis-associated dysbiotic shifts may contribute to aggravate mucosal damage since the mucositis-depleted Streptococcus salivarius was tolerated as a commensal, while the mucositis-enriched F. nucleatum displayed pro-inflammatory and pro-apoptotic capacity. CONCLUSIONS: Altogether, our work reveals that chemotherapy-induced oral mucositis is associated with bacterial dysbiosis and demonstrates the potential for dysbiotic shifts to aggravate antineoplastic-induced epithelial injury. These findings suggest that control of oral bacterial dysbiosis could represent a novel preventive approach to ameliorate oral mucositis
    corecore