220 research outputs found

    Tracing snowlines and C/O ratio in a planet-hosting disk: ALMA molecular line observations towards the HD169142 disk

    Full text link
    The composition of a forming planet is set by the material it accretes from its parent protoplanetary disk. Therefore, it is crucial to map the chemical make-up of the gas in disks to understand the chemical environment of planet formation. This paper presents molecular line observations taken with the Atacama Large Millimeter/submillimeter Array of the planet-hosting disk around the young star HD 169142. We detect N2H+, CH3OH, [CI], DCN, CS, C34S, 13CS, H2CS, H2CO, HC3N and c-C3H2 in this system for the first time. Combining these data with the recent detection of SO and previously published DCO+ data, we estimate the location of H2O and CO snowlines and investigate radial variations in the gas phase C/O ratio. We find that the HD 169142 disk has a relatively low N2H+ flux compared to the disks around Herbig stars HD 163296 and MWC 480 indicating less CO freeze-out and place the CO snowline beyond the millimetre disk at ~150 au. The detection of CH3OH from the inner disk is consistent with the H2O snowline being located at the edge of the central dust cavity at ~20 au. The radially varying CS/SO ratio across the proposed H2O snowline location is consistent with this interpretation. Additionally, the detection of CH3OH in such a warm disk adds to the growing evidence supporting the inheritance of complex ices in disks from the earlier, colder stages of star formation. Finally, we propose that the giant HD 169142 b located at 37 au is forming between the CO2 and H2O snowlines where the local elemental make of the gas is expected to have C/O=1.0.Comment: Accepted A&A 13th August 202

    Elevated micro-topography boosts growth rates in <i>Salicornia procumbens</i> by amplifying a tidally driven oxygen pump:Implications for natural recruitment and restoration

    Get PDF
    • Background and Aims: The growth rate of pioneer species is known to be a critical component determining recruitment success of marsh seedlings on tidal flats. By accelerating growth, recruits can reach a larger size at an earlier date, which reduces the length of the disturbance-free window required for successful establishment. Therefore, the pursuit of natural mechanisms that accelerate growth rates at a local scale may lead to a better understanding of the circumstances under which new establishment occurs, and may suggest new insights with which to perform restoration. This study explores how and why changes in local sediment elevation modify the growth rate of recruiting salt marsh pioneers. • Methods: A mesocosm experiment was designed in which the annual salt marsh pioneer Salicornia procumbens was grown over a series of raised, flat and lowered sediment surfaces, under a variety of tidal inundation regimes and in vertically draining or un-draining sediment. Additional physical tests quantified the effects of these treatments on sediment water-logging and oxygen dynamics, including the use of a planar optode experiment. • Key Results: In this study, the elevation of sediment micro-topography by 2 cm was the overwhelming driver of plant growth rates. Seedlings grew on average 25 % faster on raised surfaces, which represented a significant increase when compared to other groups. Changes in growth aligned well with the amplifying effect of raised sediment beds on a tidally episodic oxygenation process wherein sediment pore spaces were refreshed by oxygen-rich water at the onset of high tide. • Conclusions: Overall, the present study suggests this tidally driven oxygen pump as an explanation for commonly observed natural patterns in salt marsh recruitment near drainage channels and atop raised sediment mounds and reveals a promising way forward to promote the establishment of pioneers in the field

    Efficiënt met mineralen door KringloopWijzer

    Get PDF
    De ontwikkeling van de KringloopWijzer is in volle gang. Via een bedrijfsspecifieke rekenwijze kunnen opbrengsten en verliezen van het melkveebedrijf betrouwbaar worden vastgesteld. Dit vormt niet alleen een belangrijke basis voor verbetering van de bedrijfsvoering, maar met dit kengetallenoverzicht kan een veehouder ook verantwoording afleggen over zijn milieuprestatie

    Controlling the nitrogen environment for optimal Rhodomonas salina production

    Get PDF
    The microalga Rhodomonas salina is a widely used species for rearing live feed organisms in the aquaculture feed market. A species-specific medium is an essential step towards enhancing productivity and decreasing production costs for microalgae cultivation. However, relevant aspects of medium composition such as nitrogen source and elemental ratio have not yet been characterized for this alga. This study aimed to optimize the following three aspects of culture media: 1) optimal ratio between nitrogen and phosphorus (N:P ratio); 2) preferred source of nitrogen; and 3) tolerance of R. salina towards free ammonia. To investigate this, we conducted a series of controlled laboratory experiments in shake flasks. Our experiments revealed a 45% increase in growth rate when an N:P ratio of 15:1 was used compared to the standard ratio of 25:1. Ammonium and nitrate were equally well accepted as a nitrogen source, however, a mix of ammonium and nitrate resulted in significant growth reduction. Free ammonia did not affect growth of the alga at the tested concentrations of up to 5 mg ammonia–nitrogen L−1. We conclude that for optimal R. salina cultivation, an N:P ratio of 15:1 is strongly preferred, as it leads to a significant increase in growth rate. Further, media with a single source of nitrogen promote faster growth over media with mixed sources, and ammonium may safely be used as a nitrogen source, since R. salina tolerates certain levels of free ammonia. Overall, this work provides insights into the optimal cultivation conditions for R. salina, allowing for more efficient and reliable production of this relevant species

    Population synthesis of accreting white dwarfs: Rates and evolutionary pathways of H and He novae

    Get PDF
    Novae are some of the most commonly detected optical transients and have the potential to provide valuable information about binary evolution. Binary population synthesis codes have emerged as the most effective tool for modelling populations of binary systems, but such codes have traditionally employed greatly simplified nova physics, precluding detailed study. In this work, we implement a model treating H and He novae as individual events into the binary population synthesis code \binaryc. This treatment of novae represents a significant improvement on the `averaging' treatment currently employed in modern population synthesis codes. We discuss the evolutionary pathways leading to these phenomena and present nova event rates and distributions of several important physical parameters. Most novae are produced on massive white dwarfs, with approximately 70 and 55 per cent of nova events occurring on O/Ne white dwarfs for H and He novae respectively. Only 15 per cent of H-nova systems undergo a common-envelope phase, but these systems are responsible for the majority of H nova events. All He-accreting He-nova systems are considered post-common-envelope systems, and almost all will merge with their donor star in a gravitational-wave driven inspiral. We estimate the current annual rate of novae in M31 (Andromeda) to be approximately 41±441 \pm 4 for H novae, underpredicting the current observational estimate of 65−16+1565^{+15}_{-16}, and 0.14±0.0150.14\pm0.015 for He novae. When varying common-envelope parameters, the H nova rate varies between 20 and 80 events per year.Comment: Accepted, MNRAS. 7 Jun 2020: Minor correction regarding AM CVn masses at period bounce, courtesy of P. Neuteufe
    • …
    corecore