16,145 research outputs found

    Irreversible processes and the accelerated-decelerated phases of the Universe

    Full text link
    A model for the Universe is proposed where it is considered as a mixture of scalar and matter fields. The particle production is due to an irreversible transfer of energy from the gravitational field to the matter field and represented by a non-equilibrium pressure. This model can simulate three distinct periods of the Universe: (a) an accelerated epoch where the energy density of the scalar field prevails over the matter field, (b) a past decelerated period where the energy density of the matter field becomes more predominant than the scalar energy density, and (c) a present acceleration phase where the scalar energy density overcomes the energy density of the matter field.Comment: 6 pages, 2 figures, to be published in Brazilian Journal of Physic

    Spontaneous CP Violation in the Next-to-Minimal Supersymmetric Standard Model Revisited

    Get PDF
    We re-examine spontaneous CP violation at the tree level in the context of the next-to-minimal supersymmetric standard model (NMSSM) with two Higgs doublets and a gauge singlet field. We analyse the most general Higgs potential without a discrete Z_3 symmetry, and derive an upper bound on the mass of the lightest neutral Higgs boson consistent with present experimental data. We investigate, in particular, its dependence on the admixture and CP-violating phase of the gauge singlet field, as well as on tan(beta). To assess the viability of the spontaneous CP violation scenario, we estimate epsilon_K by applying the mass insertion approximation. We find that a non-trivial flavour structure in the soft-breaking A terms is required to account for the observed CP violation in the neutral kaon sector. Furthermore, combining the minimisation conditions for spontaneous CP violation with the constraints coming from K0-K0bar mixing, we find that the upper bound on the lightest Higgs-boson mass becomes stronger. We also point out that the electric dipole moments of electron and neutron are a serious challenge for SUSY models with spontaneous CP violation.Comment: 19 pages, LaTeX2e, 5 figures; matches the published versio

    The ionizing sources of luminous compact HII regions in the RCW106 and RCW122 clouds

    Full text link
    Given the rarity of young O star candidates, compact HII regions embedded in dense molecular cores continue to serve as potential sites to peer into the details of high-mass star formation. To uncover the ionizing sources of the most luminous and compact HII regions embedded in the RCW106 and RCW122 giant molecular clouds, known to be relatively nearby (2-4 kpc) and isolated, thus providing an opportunity to examine spatial scales of a few hundred to a thousand AU in size. High spatial resolution (0.3"), mid-infrared spectra (R=350), including the fine structure lines [ArIII] and [NeII], were obtained for four luminous compact HII regions, embedded inside the dense cores within the RCW106 and RCW122 molecular cloud complexes. At this resolution, these targets reveal point-like sources surrounded by nebulosity of different morphologies, uncovering details at spatial dimensions of <1000AU. The point-like sources display [ArIII] and [NeII] lines - the ratios of which are used to estimate the temperature of the embedded sources. The derived temperatures are indicative of mid-late O type objects for all the sources with [ArIII] emission. Previously known characteristics of these targets from the literature, including evidence of disk or accretion suggest that the identified sources may grow more to become early-type O stars by the end of the star formation process

    Estabilidade de agregados como indicador da qualidade física do solo em terra preta de índio.

    Get PDF
    O presente trabalho teve como objetivo avaliar a qualidade física de uma TPI submetida a cultivos anuais intensivos em comparação com uma área em pousio por meio da estabilidade de agregados

    Schr\"odinger formalism for a particle constrained to a surface in R13\mathbb{R}_1^3

    Get PDF
    In this work it is studied the Schr\"odinger equation for a non-relativistic particle restricted to move on a surface SS in a three-dimensional Minkowskian medium R13\mathbb{R}_1^3, i.e., the space R3\mathbb{R}^3 equipped with the metric diag(1,1,1)\text{diag}(-1,1,1). After establishing the consistency of the interpretative postulates for the new Schr\"odinger equation, namely the conservation of probability and the hermiticity of the new Hamiltonian built out of the Laplacian in R13\mathbb{R}_1^3, we investigate the confining potential formalism in the new effective geometry. Like in the well-known Euclidean case, it is found a geometry-induced potential acting on the dynamics VS=22m(εH2K)V_S = - \frac{\hbar^{2}}{2m} \left(\varepsilon H^2-K\right) which, besides the usual dependence on the mean (HH) and Gaussian (KK) curvatures of the surface, has the remarkable feature of a dependence on the signature of the induced metric of the surface: ε=+1\varepsilon= +1 if the signature is (,+)(-,+), and ε=1\varepsilon=1 if the signature is (+,+)(+,+). Applications to surfaces of revolution in R13\mathbb{R}^3_1 are examined, and we provide examples where the Schr\"odinger equation is exactly solvable. It is hoped that our formalism will prove useful in the modeling of novel materials such as hyperbolic metamaterials, which are characterized by a hyperbolic dispersion relation, in contrast to the usual spherical (elliptic) dispersion typically found in conventional materials.Comment: 26 pages, 1 figure; comments are welcom

    High Resolution 4.7 um Keck/NIRSPEC Spectra of Protostars. I: Ices and Infalling Gas in the Disk of L1489 IRS

    Get PDF
    We explore the infrared M band (4.7 um) spectrum of the class I protostar L1489 IRS in the Taurus Molecular Cloud. This is the highest resolution wide coverage spectrum at this wavelength of a low mass protostar observed to date (R=25,000; Dv=12 km/s). Many narrow absorption lines of gas phase 12CO, 13CO, and C18O are detected, as well as a prominent band of solid 12CO. The gas phase 12CO lines have red shifted absorption wings (up to 100 km/s), likely originating from warm disk material falling toward the central object. The isotopes and the 12CO line wings are successfully fitted with a contracting disk model of this evolutionary transitional object (Hogerheijde 2001). This shows that the inward motions seen in millimeter wave emission lines continue to within ~0.1 AU from the star. The colder parts of the disk are traced by the prominent CO ice band. The band profile results from CO in 'polar' ices (CO mixed with H2O), and CO in 'apolar' ices. At the high spectral resolution, the 'apolar' component is, for the first time, resolved into two distinct components, likely due to pure CO and CO mixed with CO2, O2 and/or N2. The ices have probably experienced thermal processing in the upper disk layer traced by our pencil absorption beam: much of the volatile 'apolar' ices has evaporated and the depletion factor of CO onto grains is remarkably low (~7%). This study shows that high spectral resolution 4.7 um observations provide important and unique information on the dynamics and structure of protostellar disks and the evolution of ices in these disks.Comment: 11 pages, 6 figures Scheduled to appear in ApJ 568 n2, 1 April 200

    Photospheric properties and fundamental parameters of M dwarfs

    Full text link
    M dwarfs are an important source of information when studying and probing the lower end of the Hertzsprung-Russell (HR) diagram, down to the hydrogen-burning limit. Being the most numerous and oldest stars in the galaxy, they carry fundamental information on its chemical history. The presence of molecules in their atmospheres, along with various condensed species, complicates our understanding of their physical properties and thus makes the determination of their fundamental stellar parameters more challenging and difficult. The aim of this study is to perform a detailed spectroscopic analysis of the high-resolution H-band spectra of M dwarfs in order to determine their fundamental stellar parameters and to validate atmospheric models. The present study will also help us to understand various processes, including dust formation and depletion of metals onto dust grains in M dwarf atmospheres. The high spectral resolution also provides a unique opportunity to constrain other chemical and physical processes that occur in a cool atmosphere The high-resolution APOGEE spectra of M dwarfs, covering the entire H-band, provide a unique opportunity to measure their fundamental parameters. We have performed a detailed spectral synthesis by comparing these high-resolution H-band spectra to that of the most recent BT-settl model and have obtained fundamental parameters such as effective temperature, surface gravity, and metallicity (Teff, log g and [Fe/H]) respectively.Comment: 15 pages, 10 figures, accepted for publication in A&
    corecore