238 research outputs found

    Superconductivity in the intercalated graphite compounds C6Yb and C6Ca

    Get PDF
    This thesis concerns the discovery of superconductivity in the intercalated graphite compounds C6Yb and C6Ca. A novel technique for synthesis of these intercalates has been developed, and is presented in detail. These two materials are shown to superconduct at 6.5K and 11.5K respectively. The superconductivity is demonstrated by measurements of the magnetisation and resistivity. Initial measurements of the superconducting transition of these materials as a function of pressure shows an increase in the transition with increasing pressure

    Flat bands as a route to high-temperature superconductivity in graphite

    Full text link
    Superconductivity is traditionally viewed as a low-temperature phenomenon. Within the BCS theory this is understood to result from the fact that the pairing of electrons takes place only close to the usually two-dimensional Fermi surface residing at a finite chemical potential. Because of this, the critical temperature is exponentially suppressed compared to the microscopic energy scales. On the other hand, pairing electrons around a dispersionless (flat) energy band leads to very strong superconductivity, with a mean-field critical temperature linearly proportional to the microscopic coupling constant. The prize to be paid is that flat bands can generally be generated only on surfaces and interfaces, where high-temperature superconductivity would show up. The flat-band character and the low dimensionality also mean that despite the high critical temperature such a superconducting state would be subject to strong fluctuations. Here we discuss the topological and non-topological flat bands discussed in different systems, and show that graphite is a good candidate for showing high-temperature flat-band interface superconductivity.Comment: Submitted as a chapter to the book on "Basic Physics of functionalized Graphite", 21 pages, 12 figure

    Observation of He-like satellite lines of the H-like potassium K XIX emission

    Get PDF
    We present measurements of the H-like potassium (K XIX) X-ray spectrum and its Helike (K XVIII) satellite lines, which are situated in the wavelength region between 3.34 and 3.39 Å, which has been of interest for the detection of dark matter. The measurements were taken with a high-resolution X-ray spectrometer from targets irradiated by a long-pulse (2 ns) beam from the Orion laser facility. We obtain experimental wavelength values of dielectronic recombination satellite lines and show that the ratio of the Lyα lines and their dielectronic satellite lines can be used to estimate the electron temperature, which in our case was about 1.5±0.3 keV

    Natural living – a precondition for animal welfare in organic farming

    Get PDF
    Results from a four year interdisciplinary project are presented. Animal welfare is discussed in relation to values and aims in organic farming. Based on analyzes of organic standards and other publications from the organic movement, basic “organic values” were defined. In addition, two studies of Swedish organic livestock farmers (one quantitative and one qualitative) were made. Ecocentric ethics was then identified as an ethical position for organic farming. The overall concern in organic farming is to develop sustainable farming systems, although animal welfare is also important. These aims are partly contrary, causing some difficult dilemmas related to animal welfare. The actual welfare situation in organic animal husbandry was scrutinized through a literature study. The criticism regarding bad welfare in organic farming could not be confirmed, although parasitic diseases appear to be a problem. An important finding is that animal welfare is understood differently from what is usual in conventional agriculture. It is interpreted in terms of natural living, which includes the possibility to perform a natural behavior, feed adapted to animal physiology and a natural environment. Problems in organic production should be solved with this in mind

    External quality assessment of the molecular diagnostics and genotyping of meticillin-resistant Staphylococcus aureus

    Get PDF
    Two multicentre external quality assessments (EQA) for the molecular detection and genotyping of meticillin-resistant Staphylococcus aureus (MRSA) were arranged. Firstly, 11 samples containing various amounts of inactivated MRSA strains, meticillin-susceptible S. aureus (MSSA), meticillin-resistant coagulase-negative staphylococci (MRCoNS) or Escherichia coli were distributed to 82 laboratories. Samples containing 102 or 103 MRSA cells were correctly scored in only 16 and 46% of the datasets returned, respectively. Two of the used MSSA strains contained an SCCmec cassette lacking the mecA gene. There was a marked difference in the percentage of correct results for these two MSSA strains (37 and 39%) compared to the MSSA strain lacking the SCCmec cassette (88%). Secondly, a panel for MRSA genotyping, consisting of ten samples (two identical, three genetically related and five unique strains) was distributed to 19 laboratories. Seventy-three percent of the datasets recorded all samples correctly. Most pulsed-field gel electrophoresis (PFGE) protocols proved to be suboptimal, resulting in inferior resolution in the higher or lower fragment regions. The performance of molecular diagnostics for MRSA shows no significant changes since our first EQA in 2006. The first molecular typing results are encouraging. Both assessments indicate that programme expansion is required and that major performance discrepancies continue to exist

    Superconductivity above 30 K in alkali-metal-doped hydrocarbon

    Get PDF
    The recent discovery of superconductivity with a transition temperature (Tc) at 18 K in Kxpicene has extended the possibility of high-Tc superconductors in organic materials. Previous experience based on similar hydrocarbons, like alkali-metal doped phenanthrene, suggested that even higher transition temperatures might be achieved in alkali-metals or alkali-earth-metals doped such polycyclic-aromatic-hydrocarbons (PAHs), a large family of molecules composed of fused benzene rings. Here we report the discovery of high-Tc superconductivity at 33 K in K-doped 1,2:8,9-dibenzopentacene (C30H18). To our best knowledge, it is higher than any Tc reported previously for an organic superconductor under ambient pressure. This finding provides an indication that superconductivity at much higher temperature may be possible in such PAHs system and is worthy of further exploration

    Superconductivity at 5 K in potassium doped phenanthrene

    Full text link
    Organic materials are believed to be potential superconductor with high transition temperature (TC). Organic superconductors mainly have two families: the quasi-one dimensional (TMTSF)2X and two dimensional (BEDT-TTF)2X (Ref. 1 and 2), in which TMTSF is tetramethyltetraselenafulvalene (C10H12Se4) and BEDT-TTF or "ET" is bis(ethylenedithio)tetrathiafulvalene (C10H8S8). One key feature of the organic superconductors is that they have {\pi}-molecular orbitals, and the {\pi}-electron can delocalize throughout the crystal giving rise to metallic conductivity due to a {\pi}-orbital overlap between adjacent molecules. The introduction of charge into C60 solids and graphites with {\pi}-electron networks by doping to realize superconductivity has been extensively reported3,4. Very recently, superconductivity in alkali-metal doped picene with {\pi}-electron networks was reported5. Here we report the discovery of superconductivity in potassium doped Phenanthrene with TC~5 K. TC increases with increasing pressure, and the pressure of 1 GPa leads to an increase of 20% in TC, suggesting that the potassium doped phenanthrene shows unconventional superconductivity. Both phenanthrene and picene are polycyclic aromatic hydrocarbons, and contain three and five fused benzene rings, respectively. The ribbon of fused benzene rings is part of graphene. Therefore, the discovery of superconductivity in K3Phenanthrene produces a novel broad class of superconductors consisting of fused hydrocarbon benzene rings with {\pi}-electron networks. The fact that TC increases from 5 K for KxPhenanthrene with three benzene rings to 18 K for Kxpicene with five benzene rings suggests that such organic hydrocarbons with long benzene rings is potential superconductor with high TC.Comment: 20 pages, 3 figures, one supplementary information. submitted to Nature Communication

    IgM memory B cells: a mouse/human paradox

    Get PDF
    Humoral memory is maintained by two types of persistent cells, memory B cells and plasma cells, which have different phenotypes and functions. Long-lived plasma cells can survive for a lifespan within a complex niche in the bone marrow and provide continuous protective serum antibody levels. Memory B cells reside in secondary lymphoid organs, where they can be rapidly mobilized upon a new antigenic encounter. Surface IgG has long been taken as a surrogate marker for memory in the mouse. Recently, however, we have brought evidence for a long-lived IgM memory B cell population in the mouse, while we have also argued that, in humans, these same cells are not classical memory B cells but marginal zone (MZ) B cells which, as opposed to their mouse MZ counterpart, recirculate and carry a mutated B cell receptor. In this review, we will discuss these apparently paradoxical results

    Gene Flow and Hybridization between Numerically Imbalanced Populations of Two Duck Species in the Falkland Islands

    Get PDF
    Interspecific hybridization is common in plants and animals, particularly in waterfowl (Anatidae). One factor shown to contribute to hybridization is restricted mate choice, which can occur when two species occur in sympatry but one is rare. The Hubbs principle, or “desperation hypothesis,” states that under such circumstances the rarer species is more likely to mate with heterospecifics. Here we report interspecific hybridization between two waterfowl species that coexist in broad sympatry and mixed flocks throughout southern South America. Speckled teal (Anas flavirostris) and yellow-billed pintails (Anas georgica) are abundant in continental South America, but in the Falkland Islands speckled teal outnumber yellow-billed pintails approximately ten to one. Using eight genetic loci (mtDNA and 7 nuclear introns) coupled with Bayesian assignment tests and relatedness analysis, we identified a speckled teal x yellow-billed pintail F1 hybrid female and her duckling sired by a male speckled teal. Although our sample in the Falkland Islands was small, we failed to identify unequivocal evidence of hybridization or introgression in a much larger sample from Argentina using a three-population “isolation with migration” coalescent analysis. While additional data are needed to determine if this event in the Falkland Islands was a rare singular occurrence, our results provide further support for the “desperation hypothesis,” which states that scarcity in one population and abundance of another will often lead to hybridization

    The Cyanobacterial Hepatotoxin Microcystin Binds to Proteins and Increases the Fitness of Microcystis under Oxidative Stress Conditions

    Get PDF
    Microcystins are cyanobacterial toxins that represent a serious threat to drinking water and recreational lakes worldwide. Here, we show that microcystin fulfils an important function within cells of its natural producer Microcystis. The microcystin deficient mutant ΔmcyB showed significant changes in the accumulation of proteins, including several enzymes of the Calvin cycle, phycobiliproteins and two NADPH-dependent reductases. We have discovered that microcystin binds to a number of these proteins in vivo and that the binding is strongly enhanced under high light and oxidative stress conditions. The nature of this binding was studied using extracts of a microcystin-deficient mutant in vitro. The data obtained provided clear evidence for a covalent interaction of the toxin with cysteine residues of proteins. A detailed investigation of one of the binding partners, the large subunit of RubisCO showed a lower susceptibility to proteases in the presence of microcystin in the wild type. Finally, the mutant defective in microcystin production exhibited a clearly increased sensitivity under high light conditions and after hydrogen peroxide treatment. Taken together, our data suggest a protein-modulating role for microcystin within the producing cell, which represents a new addition to the catalogue of functions that have been discussed for microbial secondary metabolites
    corecore