35 research outputs found

    A rare missense mutation in CHRNA4 associates with smoking behavior and its consequences

    Get PDF
    Using Icelandic whole-genome sequence data and an imputation approach we searched for rare sequence variants in CHRNA4 and tested them for association with nicotine dependence. We show that carriers of a rare missense variant (allele frequency = 0.24%) within CHRNA4, encoding an R336C substitution, have greater risk of nicotine addiction than non-carriers as assessed by the Fagerstrom Test for Nicotine Dependence (P= 1.2 × 10−4). The variant also confers risk of several serious smoking-related diseases previously shown to be associated with the D398N substitution in CHRNA5. We observed odds ratios (ORs) of 1.7–2.3 for lung cancer(LC;P= 4.0 × 10−4), chronic obstructive pulmonary disease (COPD;P= 9.3 × 10−4), peripheral artery disease (PAD;P= 0.090) and abdominal aortic aneurysms (AAAs; P= 0.12), and the variant associates strongly with the early-onset forms of LC (OR = 4.49,P= 2.2 × 10−4), COPD (OR = 3.22,P= 2.9 × 10−4), PAD (OR = 3.47,P= 9.2 × 10−3) and AAA (OR = 6.44, P= 6.3 × 10−3). Joint analysis of the four smoking-related diseases reveals significant association (P= 6.8 × 10−5), particularly for early-onset cases (P=2.1 × 10−7). Our results are in agreement with functional studies showing that the human α4β2 isoform of the channel containing R336C has less sensitivity for its agonists than the wild-type form following nicotine incubation

    Genome-wide association studies of cancer: current insights and future perspectives.

    Get PDF
    Genome-wide association studies (GWAS) provide an agnostic approach for investigating the genetic basis of complex diseases. In oncology, GWAS of nearly all common malignancies have been performed, and over 450 genetic variants associated with increased risks have been identified. As well as revealing novel pathways important in carcinogenesis, these studies have shown that common genetic variation contributes substantially to the heritable risk of many common cancers. The clinical application of GWAS is starting to provide opportunities for drug discovery and repositioning as well as for cancer prevention. However, deciphering the functional and biological basis of associations is challenging and is in part a barrier to fully unlocking the potential of GWAS
    corecore