123 research outputs found

    Collybistin and gephyrin are novel components of the eukaryotic translation initiation factor 3 complex

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Collybistin (CB), a neuron-specific guanine nucleotide exchange factor, has been implicated in targeting gephyrin-GABA<sub>A </sub>receptors clusters to inhibitory postsynaptic sites. However, little is known about additional CB partners and functions.</p> <p>Findings</p> <p>Here, we identified the p40 subunit of the eukaryotic translation initiation factor 3 (eIF3H) as a novel binding partner of CB, documenting the interaction in yeast, non-neuronal cell lines, and the brain. In addition, we demonstrated that gephyrin also interacts with eIF3H in non-neuronal cells and forms a complex with eIF3 in the brain.</p> <p>Conclusions</p> <p>Together, our results suggest, for the first time, that CB and gephyrin associate with the translation initiation machinery, and lend further support to the previous evidence that gephyrin may act as a regulator of synaptic protein synthesis.</p

    A fluorescence approach to investigate repartitioning of coalescing agents in acrylic polymer emulsions

    Get PDF
    Repartitioning of co-solvents between particles of latex emulsions was investigated by means of a fluorescence method based on the detection of the amount of co-solvent via the solvatochromic shift of the emission maximum of a fluorescent probe, copolymerized at a low concentration. Complete repartitioning of co-solvents between particles of latex materials with a low Tg (ca. 25 °C) occurred within minutes. For a hydrophilic latex with a Tg of 68 °C, equilibration was achieved within an hour. Repartitioning was faster for more hydrophobic co-solvents. For a hydrophobic latex of similar Tg, co-solvent repartitioning took place on the same time scale, but complete equilibration was not reached. Possibly, there is an additional slow component in the repartitioning, or the prolonged presence of co-solvent causes a structural change in the latex particles that affects the outcome of the experiment

    Mechanical stretch and shear flow induced reorganization and recruitment of fibronectin in fibroblasts

    Get PDF
    It was our objective to study the role of mechanical stimulation on fibronectin (FN) reorganization and recruitment by exposing fibroblasts to shear fluid flow and equibiaxial stretch. Mechanical stimulation was also combined with a Rho inhibitor to probe their coupled effects on FN. Mechanically stimulated cells revealed a localization of FN around the cell periphery as well as an increase in FN fibril formation. Mechanical stimulation coupled with chemical stimulation also revealed an increase in FN fibrils around the cell periphery. Complimentary to this, fibroblasts exposed to fluid shear stress structurally rearranged pre-coated surface FN, but unstimulated and stretched cells did not. These results show that mechanical stimulation directly affected FN reorganization and recruitment, despite perturbation by chemical stimulation. Our findings will help elucidate the mechanisms of FN biosynthesis and organization by furthering the link of the role of mechanics with FN

    Cultural Phylogenetics of the Tupi Language Family in Lowland South America

    Get PDF
    Background: Recent advances in automated assessment of basic vocabulary lists allow the construction of linguistic phylogenies useful for tracing dynamics of human population expansions, reconstructing ancestral cultures, and modeling transition rates of cultural traits over time. Methods: Here we investigate the Tupi expansion, a widely-dispersed language family in lowland South America, with a distance-based phylogeny based on 40-word vocabulary lists from 48 languages. We coded 11 cultural traits across the diverse Tupi family including traditional warfare patterns, post-marital residence, corporate structure, community size, paternity beliefs, sibling terminology, presence of canoes, tattooing, shamanism, men’s houses, and lip plugs. Results/Discussion: The linguistic phylogeny supports a Tupi homeland in west-central Brazil with subsequent major expansions across much of lowland South America. Consistently, ancestral reconstructions of cultural traits over the linguistic phylogeny suggest that social complexity has tended to decline through time, most notably in the independent emergence of several nomadic hunter-gatherer societies. Estimated rates of cultural change across the Tupi expansion are on the order of only a few changes per 10,000 years, in accord with previous cultural phylogenetic results in other languag

    The Toll→NFκB Signaling Pathway Mediates the Neuropathological Effects of the Human Alzheimer's Aβ42 Polypeptide in Drosophila

    Get PDF
    Alzheimer's (AD) is a progressive neurodegenerative disease that afflicts a significant fraction of older individuals. Although a proteolytic product of the Amyloid precursor protein, the Αβ42 polypeptide, has been directly implicated in the disease, the genes and biological pathways that are deployed during the process of Αβ42 induced neurodegeneration are not well understood and remain controversial. To identify genes and pathways that mediated Αβ42 induced neurodegeneration we took advantage of a Drosophila model for AD disease in which ectopically expressed human Αβ42 polypeptide induces cell death and tissue degeneration in the compound eye. One of the genes identified in our genetic screen is Toll (Tl). It encodes the receptor for the highly conserved Tl→NFkB innate immunity/inflammatory pathway and is a fly homolog of the mammalian Interleukin-1 (Ilk-1) receptor. We found that Tl loss-of-function mutations dominantly suppress the neuropathological effects of the Αβ42 polypeptide while gain-of-function mutations that increase receptor activity dominantly enhance them. Furthermore, we present evidence demonstrating that Tl and key downstream components of the innate immunity/inflammatory pathway play a central role in mediating the neuropathological activities of Αβ42. We show that the deleterious effects of Αβ42 can be suppressed by genetic manipulations of the Tl→NFkB pathway that downregulate signal transduction. Conversely, manipulations that upregulate signal transduction exacerbate the deleterious effects of Aβ42. Since postmortem studies have shown that the Ilk-1→NFkB innate immunity pathway is substantially upregulated in the brains of AD patients, the demonstration that the Tl→NFkB signaling actively promotes the process of Αβ42 induced cell death and tissue degeneration in flies points to possible therapeutic targets and strategies

    A Comparative Structural Bioinformatics Analysis of the Insulin Receptor Family Ectodomain Based on Phylogenetic Information

    Get PDF
    The insulin receptor (IR), the insulin-like growth factor 1 receptor (IGF1R) and the insulin receptor-related receptor (IRR) are covalently-linked homodimers made up of several structural domains. The molecular mechanism of ligand binding to the ectodomain of these receptors and the resulting activation of their tyrosine kinase domain is still not well understood. We have carried out an amino acid residue conservation analysis in order to reconstruct the phylogeny of the IR Family. We have confirmed the location of ligand binding site 1 of the IGF1R and IR. Importantly, we have also predicted the likely location of the insulin binding site 2 on the surface of the fibronectin type III domains of the IR. An evolutionary conserved surface on the second leucine-rich domain that may interact with the ligand could not be detected. We suggest a possible mechanical trigger of the activation of the IR that involves a slight ‘twist’ rotation of the last two fibronectin type III domains in order to face the likely location of insulin. Finally, a strong selective pressure was found amongst the IRR orthologous sequences, suggesting that this orphan receptor has a yet unknown physiological role which may be conserved from amphibians to mammals

    Doxapram versus placebo in preterm newborns: a study protocol for an international double blinded multicentre randomized controlled trial (DOXA-trial)

    Get PDF
    Background: Apnoea of prematurity (AOP) is one of the most common diagnoses among preterm infants. AOP often leads to hypoxemia and bradycardia which are associated with an increased risk of death or disability. In addition to caffeine therapy and non-invasive respiratory support, doxapram might be used to reduce hypoxemic episodes and the need for invasive mechanical ventilation in preterm infants, thereby possibly improving their long-term outcome. However, high-quality trials on doxapram are lacking. The DOXA-trial therefore aims to investigate the safety and efficacy of doxapram compared to placebo in reducing the composite outcome of death or severe disability at 18 to 24 months corrected age. Methods: The DOXA-trial is a double blinded, multicentre, randomized, placebo-controlled trial conducted in the Netherlands, Belgium and Canada. A total of 396 preterm infants with a gestational age below 29 weeks, suffering from AOP unresponsive to non-invasive respiratory support and caffeine will be randomized to receive doxapram therapy or placebo. The primary outcome is death or severe disability, defined as cognitive delay, cerebral palsy, severe hearing loss, or bilateral blindness, at 18–24 months corrected age. Secondary outcomes are short-term neonatal morbidity, including duration of mechanical ventilation, bronchopulmonary dysplasia and necrotising enterocolitis, hospital mortality, adverse effects, pharmacokinetics and cost-effectiveness. Analysis will be on an intention-to-treat principle. Discussion: Doxapram has the potential to improve neonatal outcomes by improving respiration, but the safety concerns need to be weighed against the potential risks of invasive mechanical ventilation. It is unknown if the use of doxapram improves the long-term outcome. This forms the clinical equipoise of the current trial. This international, multicentre trial will provide the needed high-quality evidence on the efficacy and safety of doxapram in the treatment of AOP in preterm infants. Trial registration: ClinicalTrials.gov NCT04430790 and EUDRACT 2019-003666-41. Prospectively registered on respectively June and January 2020
    corecore