12 research outputs found

    Glutathione S-transferase mu 1 (GSTM1) and theta 1 (GSTT1) genetic polymorphisms and atopic asthma in children from Southeastern Brazil

    Get PDF
    Xenobiotics can trigger degranulation of eosinophils and mast cells. In this process, the cells release several substances leading to bronchial hyperactivity, the main feature of atopic asthma (AA). GSTM1 and GSTT1 genes encode enzymes involved in the inactivation of these compounds. Both genes are polymorphic in humans and have a null variant genotype in which both the gene and corresponding enzyme are absent. An increased risk for disease in individuals with the null GST genotypes is therefore, but this issue is controversial. The aim of this study was to investigate the influence of the GSTM1 and GSTT1 genotypes on the occurrence of AA, as well as on its clinical manifestations. Genomic DNA from 86 patients and 258 controls was analyzed by polymerase chain reaction. The frequency of the GSTM1 null genotype in patients was higher than that found in controls (60.5% versus 40.3%, p = 0.002). In individuals with the GSTM1 null genotype the risk of manifested AA was 2.3-fold higher (95%CI: 1.4-3.7) than for others. In contrast, similar frequencies of GSTT1 null and combined GSTM1 plus GSTT1 null genotypes were seen in both groups. No differences in genotype frequencies were perceived in patients stratified by age, gender, ethnic origin, and severity of the disease. These results suggest that the inherited absence of the GSTM1 metabolic pathway may alter the risk of AA in southeastern Brazilian children, although this must be confirmed by further studies with a larger cohort of patients and age-matched controls from the distinct regions of the country

    Homozygous deletion of the UGT2B17 gene is not associated with osteoporosis risk in elderly Caucasian women

    No full text
    SUMMARY: Previously, homozygous deletion of the UGT2B17 gene has shown association with hip fracture. Using a high-throughput qRT-PCR assay, we genotyped UGT2B17 copy number variation (CNV) in 1,347 elderly Caucasian women and examined for effects on bone phenotypes. We found no evidence of association between UGT2B17 CNV and osteoporosis risk in this population. INTRODUCTION: Genetic studies of osteoporosis commonly examine SNPs in candidate genes or whole genome analyses, but insertions and deletions of DNA, collectively called CNV, also comprise a large amount of the genetic variability between individuals. Previously, homozygous deletion of the UGT2B17 gene in CNV 4q13.2, which encodes an enzyme that mediates the glucuronidation of steroid hormones, has shown association with the risk of hip fracture. METHODS: We used a quantitative real-time PCR assay for genotyping the UGT2B17 CNV in a well-characterized population study of 1,347 Caucasian women aged 75.2 ± 2.7 (mean ± SD) years, to assess the effect of the CNV on bone mass density (BMD) at the total hip site and osteoporosis risk. RESULTS: The UGT2B17 CNV distribution was consistent with the expected Hardy-Weinberg distribution and not different from frequencies previously reported in a Caucasian population. Data from ANCOVA of age- and weight-adjusted BMD for UGT2B17 CNV genotype showed no significant difference between genotype groups. Individuals with homozygous or heterozygous deletion of the UGT2B17 gene showed no increased risk of incident fragility fracture. CONCLUSIONS: These data suggest that quantitative real-time PCR is a rapid and efficient technique for determination of candidate CNVs, including the UGT2B17 CNV; however, we found no evidence of an effect of UGT2B17 CNV on osteoporosis risk in elderly Caucasian women
    corecore