38 research outputs found

    A broad distribution of the alternative oxidase in microsporidian parasites

    Get PDF
    Microsporidia are a group of obligate intracellular parasitic eukaryotes that were considered to be amitochondriate until the recent discovery of highly reduced mitochondrial organelles called mitosomes. Analysis of the complete genome of Encephalitozoon cuniculi revealed a highly reduced set of proteins in the organelle, mostly related to the assembly of ironsulphur clusters. Oxidative phosphorylation and the Krebs cycle proteins were absent, in keeping with the notion that the microsporidia and their mitosomes are anaerobic, as is the case for other mitosome bearing eukaryotes, such as Giardia. Here we provide evidence opening the possibility that mitosomes in a number of microsporidian lineages are not completely anaerobic. Specifically, we have identified and characterized a gene encoding the alternative oxidase (AOX), a typically mitochondrial terminal oxidase in eukaryotes, in the genomes of several distantly related microsporidian species, even though this gene is absent from the complete genome of E. cuniculi. In order to confirm that these genes encode functional proteins, AOX genes from both A. locustae and T. hominis were over-expressed in E. coli and AOX activity measured spectrophotometrically using ubiquinol-1 (UQ-1) as substrate. Both A. locustae and T. hominis AOX proteins reduced UQ-1 in a cyanide and antimycin-resistant manner that was sensitive to ascofuranone, a potent inhibitor of the trypanosomal AOX. The physiological role of AOX microsporidia may be to reoxidise reducing equivalents produced by glycolysis, in a manner comparable to that observed in trypanosome

    Actions of a Proline Analogue, L-Thiazolidine-4-Carboxylic Acid (T4C), on Trypanosoma cruzi

    Get PDF
    It is well established that L-proline has several roles in the biology of trypanosomatids. In Trypanosoma cruzi, the etiological agent of Chagas' disease, this amino acid is involved in energy metabolism, differentiation processes and resistance to osmotic stress. In this study, we analyzed the effects of interfering with L-proline metabolism on the viability and on other aspects of the T. cruzi life cycle using the proline analogue L- thiazolidine-4-carboxylic acid (T4C). The growth of epimastigotes was evaluated using different concentrations of T4C in standard culture conditions and at high temperature or acidic pH. We also evaluated possible interactions of this analogue with stress conditions such as those produced by nutrient starvation and oxidative stress. T4C showed a dose-response effect on epimastigote growth (IC50 = 0.89±0.02 mM at 28°C), and the inhibitory effect of this analogue was synergistic (p<0.05) with temperature (0.54±0.01 mM at 37°C). T4C significantly diminished parasite survival (p<0.05) in combination with nutrient starvation and oxidative stress conditions. Pre-incubation of the parasites with L-proline resulted in a protective effect against oxidative stress, but this was not seen in the presence of the drug. Finally, the trypomastigote bursting from infected mammalian cells was evaluated and found to be inhibited by up to 56% when cells were treated with non-toxic concentrations of T4C (between 1 and 10 mM). All these data together suggest that T4C could be an interesting therapeutic drug if combined with others that affect, for example, oxidative stress. The data also support the participation of proline metabolism in the resistance to oxidative stress

    Effects of turnip crinkle virus infection on the structure and function of mitochondria and expression of stress proteins in turnips

    Get PDF
    We have investigated the effect of turnip crinkle virus (TCV) infection on mitochondrial structure and function in turnips (Brassica rapa cultivar “Just Right”). TCV infection resulted in plants with small, mottled leaves with severely crinkled edges, and in a 46% reduction in storage root mass. TCV infection resulted in specific vesicularization of mitochondrial outer membranes where TCV replication is thought to occur, with no apparent affect on other cellular membrane systems. Immunoblot analysis of mitochondrial proteins from storage roots indicated that the TCV p28 protein, which is essential for viral replication, was associated with mitochondria and that mitochondrial heat shock protein 70 and cpn60 levels increased upon TCV infection. Isolation of mitochondrial outer membranes further showed TCV p28 protein enrichment in the outer membrane as compared with total mitochondrial proteins or total cellular proteins. Analysis of mitochondrial electron transport chain activities indicated that TCV infection resulted in a 54% decrease in exogenous NADH-dependent oxygen uptake and a 8% decrease in succinate- dependent oxygen uptake. Together these results indicate that TCV infection induces a stress response in mitochondria and a reduction in the ability of mitochondria to supply adenosine 5’-triphosphate to the cell
    corecore