1,707 research outputs found

    Kinetics of coupled Fe(II)-catalysed ferrihydrite transformation and U(VI) reduction

    Get PDF
    Antimony is released into the environment in some natural and man-induced processes. [1]. Yet, its impact on the transformation processes of heavy metal-adsorbing minerals remains poorly understood. In acid-mine drainage systems and shooting ranges, the adsorption of antimony by iron oxides such as ferrihydrite can play a major role. The poorly crystalline 2-line ferrihydrite represents one of the most common Fe oxides in these settings and can transform to goethite (,-FeOOH) or hematite (,-Fe2O3) with time [2]. The rate of transformation depends on the pH, temperature, and on the ions and molecules present during the transformation process [3]. This study focuses on the transformation of synthetic ferrihydrite to crystalline iron oxides in the presence of Sb(V). Transformations were carried out for 1-16 days at 70 ºC and at pH 4, 7 and 12, with different concentrations of Sb(V) (0.00, 0.23, 0.75, 2.25 and 6.00 mM Sb). Samples taken from aqueous suspensions were washed, dried, and characterized by X-ray diffraction (XRD) and atomic absorption spectroscopy (AAS). At pH 12, goethite (Sb concentrations up to 3.7 mg Sb/g) is favored and the transformation is completed after one day. Only a concentration of 6 mM Sb retarded the transformation, where even after 8 days only 50 % of the ferrihydrite was transformed into goethite. Transformations at pH 7 led to a mixture of 75 % hematite and 25 % goethite (4.3 mg Sb/g). However, at concentrations of 6 mM Sb, feroxyhyte (!- FeOOH) (9.1 mg Sb/g) was favored instead. At pH 4, hematite (32.3 mg Sb/g) was favored except for concentrations of 6 mM Sb, were again feroxyhyte (141.1 mg Sb/g) occurred. We assume that increased Sb concentrations favor feroxyhyte and indicate the incorporation of Sb into the structure of feroxyhyte. © The Author

    Ferric iron geometry and coordination during hydrolysis and ferrihydrite precipitation

    Get PDF
    Definitive structural characterisation of ferrihydrite has challenged scientists primarily due to its nanosized particles and inherent long-range structural disorder which challenges analytical methodology (and modelling) typically employed to determine the structure of minerals. Here we report on the application of a synchrotron quick-scanning X-ray absorption spectroscopy (XAS) approach, which allows the collection of Extended X-ray Absorption Fine Structure (EXAFS) spectral data to k = 15 Å-1 in < 1 minute, to obtain unparalleled iron Kedge data on the hydrolysis of FeIII(H2O)6 and ferrihydrite precipitation. Modelling of the pre-edge and EXAFS data: 1) supports theoretical studies which have suggested the existence of a monomeric penta-coordinated FeIII hydrolysis species and; 2) corroborates recently proposed structural models of ferrihydrite that contain tetrahedral FeIII. Modelling results indicate that ferrihydrite consists of 15 to 25 % tetrahedral FeIII and suggest that this geometry must be included in any comprehensive structural model of ferrihydrite and, furthermore, should be considered when evaluating the reactivity, stability and other structure-property relationships of this mineral. © The Authors

    On the Trace Anomaly and the Anomaly Puzzle in N=1 Pure Yang-Mills

    Full text link
    The trace anomaly of the energy-momentum tensor is usually quoted in the form which is proportional to the beta function of the theory. However, there are in general many definitions of gauge couplings depending on renormalization schemes, and hence many beta functions. In particular, N=1 supersymmetric pure Yang-Mills has the holomorphic gauge coupling whose beta function is one-loop exact, and the canonical gauge coupling whose beta function is given by the Novikov-Shifman-Vainshtein-Zakharov beta function. In this paper, we study which beta function should appear in the trace anomaly in N=1 pure Yang-Mills. We calculate the trace anomaly by employing the N=4 regularization of N=1 pure Yang-Mills. It is shown that the trace anomaly is given by one-loop exact form if the composite operator appearing in the trace anomaly is renormalized in a preferred way. This result gives the simplest resolution to the anomaly puzzle in N=1 pure Yang-Mills. The most important point is to examine in which scheme the quantum action principle is valid, which is crucial in the derivation of the trace anomaly.Comment: 25 pages, 1 figure; v2:slight correction in sec.5, minor addition in appendi

    Influence maximization in social Networks when negative opinions may emerge and propagate

    Get PDF
    Influence maximization, defined by Kempe, Kleinberg, and Tardos (2003), is the problem of finding a small set of seed nodes in a social network that maximizes the spread of influence under certain influence cascade models. In this paper, we propose an extension to the independent cascade model that incorporates the emergence and propagation of negative opinions. The new model has an explicit parameter called quality factor to model the natural behavior of people turning negative to a product due to product defects. Our model incorporates negativity bias (negative opinions usually dominate over positive opinions) commonly acknowledged in the social psychology literature. The model maintains some nice properties such as submodularity, which allows a greedy approximation algorithm for maximizing positive influence within a ratio of 1 1=e. We define a quality sensitivity ratio (qs-ratio) of influence graphs and show a tight bound of ( p n=k) on the qs-ratio, where n is the number of nodes in the network and k is the number of seeds selected, which indicates that seed selection is sensitive to the quality factor for general graphs. We design an efficient algorithm to compute influence in tree structures, which is nontrivial due to the negativity bias in the model. We use this algorithm as the core to build a heuristic algorithm for influence maximization for general graphs. Through simulations, we show that our heuristic algorithm has matching influence with a standard greedy approximation algorithm while being orders of magnitude faster.Preprin

    History of clinical transplantation

    Get PDF
    The emergence of transplantation has seen the development of increasingly potent immunosuppressive agents, progressively better methods of tissue and organ preservation, refinements in histocompatibility matching, and numerous innovations is surgical techniques. Such efforts in combination ultimately made it possible to successfully engraft all of the organs and bone marrow cells in humans. At a more fundamental level, however, the transplantation enterprise hinged on two seminal turning points. The first was the recognition by Billingham, Brent, and Medawar in 1953 that it was possible to induce chimerism-associated neonatal tolerance deliberately. This discovery escalated over the next 15 years to the first successful bone marrow transplantations in humans in 1968. The second turning point was the demonstration during the early 1960s that canine and human organ allografts could self-induce tolerance with the aid of immunosuppression. By the end of 1962, however, it had been incorrectly concluded that turning points one and two involved different immune mechanisms. The error was not corrected until well into the 1990s. In this historical account, the vast literature that sprang up during the intervening 30 years has been summarized. Although admirably documenting empiric progress in clinical transplantation, its failure to explain organ allograft acceptance predestined organ recipients to lifetime immunosuppression and precluded fundamental changes in the treatment policies. After it was discovered in 1992 that long-surviving organ transplant recipient had persistent microchimerism, it was possible to see the mechanistic commonality of organ and bone marrow transplantation. A clarifying central principle of immunology could then be synthesized with which to guide efforts to induce tolerance systematically to human tissues and perhaps ultimately to xenografts

    Acute rejection is associated with antibodies to non-Gal antigens in baboons using Gal-knockout pig kidneys

    Get PDF
    We transplanted kidneys from α1,3-galactosyltransferase knockout (GalT-KO) pigs into six baboons using two different immunosuppressive regimens, but most of the baboons died from severe acute humoral xenograft rejection. Circulating induced antibodies to non-Gal antigens were markedly elevated at rejection, which mediated strong complement-dependent cytotoxicity against GalT-KO porcine target cells. These data suggest that antibodies to non-Gal antigens will present an additional barrier to transplantation of organs from GalT-KO pigs to humans. © 2005 Nature Publishing Group
    corecore