56 research outputs found

    Cortico-cerebellar interactions during goal-directed behavior

    Get PDF
    Preparatory activity is observed across multiple interconnected brain regions before goal-directed movement. Preparatory activity reflects discrete activity states representing specific future actions. It is unclear how this activity is mediated by multi-regional interactions. Recent evidence suggests that the cerebellum, classically associated with fine motor control, contributes to preparatory activity in the neocortex. We review recent advances and offer perspective on the function of cortico-cerebellar interactions during goal-directed behavior. We propose that the cerebellum learns to facilitate transitions between neocortical activity states. Transitions between activity states enable flexible and appropriately timed behavioral responses

    The sensory representation of causally controlled objects

    Get PDF
    Intentional control over external objects is informed by our sensory experience of them. To study how causal relationships are learned and effected, we devised a brain machine interface (BMI) task using wide-field calcium signals. Mice learned to entrain activity patterns in arbitrary pairs of cortical regions to guide a visual cursor to a target location for reward. Brain areas that were normally correlated could be rapidly reconfigured to exert control over the cursor in a sensory-feedback-dependent manner. Higher visual cortex was more engaged when expert but not naive animals controlled the cursor. Individual neurons in higher visual cortex responded more strongly to the cursor when mice controlled it than when they passively viewed it, with the greatest response boosting as the cursor approached the target location. Thus, representations of causally controlled objects are sensitive to intention and proximity to the subject’s goal, potentially strengthening sensory feedback to allow more fluent control

    Experience-dependent specialization of receptive field surround for selective coding of natural scenes

    Get PDF
    At eye opening, neurons in primary visual cortex (V1) are selective for stimulus features, but circuits continue to refine in an experience-dependent manner for some weeks thereafter. How these changes contribute to the coding of visual features embedded in complex natural scenes remains unknown. Here we show that normal visual experience after eye opening is required for V1 neurons to develop a sensitivity for the statistical structure of natural stimuli extending beyond the boundaries of their receptive fields (RFs), which leads to improvements in coding efficiency for full-field natural scenes (increased selectivity and information rate). These improvements are mediated by an experience-dependent increase in the effectiveness of natural surround stimuli to hyperpolarize the membrane potential specifically during RF-stimulus epochs triggering action potentials. We suggest that neural circuits underlying surround modulation are shaped by the statistical structure of visual input, which leads to more selective coding of features in natural scenes

    Mesoscale cortical dynamics reflect the interaction of sensory evidence and temporal expectation during perceptual decision-making

    Get PDF
    How sensory evidence is transformed across multiple brain regions to influence behavior remains poorly understood. We trained mice in a visual change detection task designed to separate the covert antecedents of choices from activity associated with their execution. Wide-field calcium imaging across the dorsal cortex revealed fundamentally different dynamics of activity underlying these processes. Although signals related to execution of choice were widespread, fluctuations in sensory evidence in the absence of overt motor responses triggered a confined activity cascade, beginning with transient modulation of visual cortex and followed by sustained recruitment of the secondary and primary motor cortex. Activation of the motor cortex by sensory evidence was modulated by animals’ expectation of when the stimulus was likely to change. These results reveal distinct activation timescales of specific cortical areas by sensory evidence during decision-making and show that recruitment of the motor cortex depends on the interaction of sensory evidence and temporal expectation

    Cerebellar Contribution to Preparatory Activity in Motor Neocortex

    Get PDF
    In motor neocortex, preparatory activity predictive of specific movements is maintained by a positive feedback loop with the thalamus. Motor thalamus receives excitatory input from the cerebellum, which learns to generate predictive signals for motor control. The contribution of this pathway to neocortical preparatory signals remains poorly understood. Here, we show that, in a virtual reality conditioning task, cerebellar output neurons in the dentate nucleus exhibit preparatory activity similar to that in anterolateral motor cortex prior to reward acquisition. Silencing activity in dentate nucleus by photoactivating inhibitory Purkinje cells in the cerebellar cortex caused robust, short-latency suppression of preparatory activity in anterolateral motor cortex. Our results suggest that preparatory activity is controlled by a learned decrease of Purkinje cell firing in advance of reward under supervision of climbing fiber inputs signaling reward delivery. Thus, cerebellar computations exert a powerful influence on preparatory activity in motor neocortex

    Learning and attention increase visual response selectivity through distinct mechanisms

    Get PDF
    Selectivity of cortical neurons for sensory stimuli can increase across days as animals learn their behavioral relevance and across seconds when animals switch attention. While both phenomena occur in the same circuit, it is unknown whether they rely on similar mechanisms. We imaged primary visual cortex as mice learned a visual discrimination task and subsequently performed an attention switching task. Selectivity changes due to learning and attention were uncorrelated in individual neurons. Selectivity increases after learning mainly arose from selective suppression of responses to one of the stimuli but from selective enhancement and suppression during attention. Learning and attention differentially affected interactions between excitatory and PV, SOM, and VIP inhibitory cells. Circuit modeling revealed that cell class-specific top-down inputs best explained attentional modulation, while reorganization of local functional connectivity accounted for learning-related changes. Thus, distinct mechanisms underlie increased discriminability of relevant sensory stimuli across longer and shorter timescales

    The emergence of functional microcircuits in visual cortex.

    No full text
    Sensory processing occurs in neocortical microcircuits in which synaptic connectivity is highly structured and excitatory neurons form subnetworks that process related sensory information. However, the developmental mechanisms underlying the formation of functionally organized connectivity in cortical microcircuits remain unknown. Here we directly relate patterns of excitatory synaptic connectivity to visual response properties of neighbouring layer 2/3 pyramidal neurons in mouse visual cortex at different postnatal ages, using two-photon calcium imaging in vivo and multiple whole-cell recordings in vitro. Although neural responses were already highly selective for visual stimuli at eye opening, neurons responding to similar visual features were not yet preferentially connected, indicating that the emergence of feature selectivity does not depend on the precise arrangement of local synaptic connections. After eye opening, local connectivity reorganized extensively: more connections formed selectively between neurons with similar visual responses and connections were eliminated between visually unresponsive neurons, but the overall connectivity rate did not change. We propose a sequential model of cortical microcircuit development based on activity-dependent mechanisms of plasticity whereby neurons first acquire feature preference by selecting feedforward inputs before the onset of sensory experience--a process that may be facilitated by early electrical coupling between neuronal subsets--and then patterned input drives the formation of functional subnetworks through a redistribution of recurrent synaptic connections

    The Impact of Spatial Incongruence on an Auditory-Visual Illusion

    Get PDF
    The sound-induced flash illusion is an auditory-visual illusion--when a single flash is presented along with two or more beeps, observers report seeing two or more flashes. Previous research has shown that the illusion gradually disappears as the temporal delay between auditory and visual stimuli increases, suggesting that the illusion is consistent with existing temporal rules of neural activation in the superior colliculus to multisensory stimuli. However little is known about the effect of spatial incongruence, and whether the illusion follows the corresponding spatial rule. If the illusion occurs less strongly when auditory and visual stimuli are separated, then integrative processes supporting the illusion must be strongly dependant on spatial congruence. In this case, the illusion would be consistent with both the spatial and temporal rules describing response properties of multisensory neurons in the superior colliculus.status: publishe

    Loss of Arc renders the visual cortex impervious to the effects of sensory experience or deprivation

    Get PDF
    A myriad of mechanisms have been suggested to account for the full richness of visual cortical plasticity. We found that visual cortex lacking Arc is impervious to the effects of deprivation or experience. Using intrinsic signal imaging and chronic visually evoked potential recordings, we found that Arcβˆ’/βˆ’ mice did not exhibit depression of deprived-eye responses or a shift in ocular dominance after brief monocular deprivation. Extended deprivation also failed to elicit a shift in ocular dominance or open-eye potentiation. Moreover, Arcβˆ’/βˆ’ mice lacked stimulus-selective response potentiation. Although Arcβˆ’/βˆ’ mice exhibited normal visual acuity, baseline ocular dominance was abnormal and resembled that observed after dark-rearing. These data suggest that Arc is required for the experience-dependent processes that normally establish and modify synaptic connections in visual cortex.Howard Hughes Medical InstituteNational Science Foundation (U.S.

    Maturation of GABAergic Inhibition Promotes Strengthening of Temporally Coherent Inputs among Convergent Pathways

    Get PDF
    Spike-timing-dependent plasticity (STDP), a form of Hebbian plasticity, is inherently stabilizing. Whether and how GABAergic inhibition influences STDP is not well understood. Using a model neuron driven by converging inputs modifiable by STDP, we determined that a sufficient level of inhibition was critical to ensure that temporal coherence (correlation among presynaptic spike times) of synaptic inputs, rather than initial strength or number of inputs within a pathway, controlled postsynaptic spike timing. Inhibition exerted this effect by preferentially reducing synaptic efficacy, the ability of inputs to evoke postsynaptic action potentials, of the less coherent inputs. In visual cortical slices, inhibition potently reduced synaptic efficacy at ages during but not before the critical period of ocular dominance (OD) plasticity. Whole-cell recordings revealed that the amplitude of unitary IPSCs from parvalbumin positive (Pv+) interneurons to pyramidal neurons increased during the critical period, while the synaptic decay time-constant decreased. In addition, intrinsic properties of Pv+ interneurons matured, resulting in an increase in instantaneous firing rate. Our results suggest that maturation of inhibition in visual cortex ensures that the temporally coherent inputs (e.g. those from the open eye during monocular deprivation) control postsynaptic spike times of binocular neurons, a prerequisite for Hebbian mechanisms to induce OD plasticity
    • …
    corecore