39 research outputs found

    Transient peak-strain matching partially recovers the age-impaired mechanoadaptive cortical bone response

    Get PDF
    Mechanoadaptation maintains bone mass and architecture; its failure underlies age-related decline in bone strength. It is unclear whether this is due to failure of osteocytes to sense strain, osteoblasts to form bone or insufficient mechanical stimulus. Mechanoadaptation can be restored to aged bone by surgical neurectomy, suggesting that changes in loading history can rescue mechanoadaptation. We use non-biased, whole-bone tibial analyses, along with characterisation of surface strains and ensuing mechanoadaptive responses in mice at a range of ages, to explore whether sufficient load magnitude can activate mechanoadaptation in aged bone. We find that younger mice adapt when imposed strains are lower than in mature and aged bone. Intriguingly, imposition of short-term, high magnitude loading effectively primes cortical but not trabecular bone of aged mice to respond. This response was regionally-matched to highest strains measured by digital image correlation and to osteocytic mechanoactivation. These data indicate that aged bone’s loading response can be partially recovered, non-invasively by transient, focal high strain regions. Our results indicate that old murine bone does respond to load when the loading is of sufficient magnitude, and bones’ age-related adaptation failure may be due to insufficient mechanical stimulus to trigger mechanoadaptation

    Cholinergic Modulation of Narcoleptic Attacks in Double Orexin Receptor Knockout Mice

    Get PDF
    To investigate how cholinergic systems regulate aspects of the sleep disorder narcolepsy, we video-monitored mice lacking both orexin (hypocretin) receptors (double knockout; DKO mice) while pharmacologically altering cholinergic transmission. Spontaneous behavioral arrests in DKO mice were highly similar to those reported in orexin-deficient mice and were never observed in wild-type (WT) mice. A survival analysis revealed that arrest lifetimes were exponentially distributed indicating that random, Markovian processes determine arrest lifetime. Low doses (0.01, 0.03 mg/kg, IP), but not a high dose (0.08 mg/kg, IP) of the cholinesterase inhibitor physostigmine increased the number of arrests but did not alter arrest lifetimes. The muscarinic antagonist atropine (0.5 mg/kg, IP) decreased the number of arrests, also without altering arrest lifetimes. To determine if muscarinic transmission in pontine areas linked to REM sleep control also influences behavioral arrests, we microinjected neostigmine (50 nl, 62.5 µM) or neostigmine + atropine (62.5 µM and 111 µM respectively) into the nucleus pontis oralis and caudalis. Neostigmine increased the number of arrests in DKO mice without altering arrest lifetimes but did not provoke arrests in WT mice. Co-injection of atropine abolished this effect. Collectively, our findings establish that behavioral arrests in DKO mice are similar to those in orexin deficient mice and that arrests have exponentially distributed lifetimes. We also show, for the first time in a rodent narcolepsy model, that cholinergic systems can regulate arrest dynamics. Since perturbations of muscarinic transmission altered arrest frequency but not lifetime, our findings suggest cholinergic systems influence arrest initiation without influencing circuits that determine arrest duration

    The waking brain: an update

    Get PDF
    Wakefulness and consciousness depend on perturbation of the cortical soliloquy. Ascending activation of the cerebral cortex is characteristic for both waking and paradoxical (REM) sleep. These evolutionary conserved activating systems build a network in the brainstem, midbrain, and diencephalon that contains the neurotransmitters and neuromodulators glutamate, histamine, acetylcholine, the catecholamines, serotonin, and some neuropeptides orchestrating the different behavioral states. Inhibition of these waking systems by GABAergic neurons allows sleep. Over the past decades, a prominent role became evident for the histaminergic and the orexinergic neurons as a hypothalamic waking center

    Psychosocial determinants of sustained maternal functional impairment: longitudinal findings from a pregnancy-birth cohort study in rural Pakistan

    Get PDF
    Function is an important marker of health throughout the life course, however, in low-and-middle-income-countries, little is known about the burden of functional impairment as women transition from pregnancy to the first year post-partum. Leveraging longitudinal data from 960 women participating in the Share Child Cohort in Pakistan, this study sought to (1) characterize functional trajectories over time among women in their perinatal period and (2) assess predictors of chronic poor functioning following childbirth. We used a group-based trajectory modeling approach to examine maternal patterns of function from the third trimester of pregnancy through 12 months post-partum. Three trajectory groups were found: persistently well-functioning (51% of women), poor functioning with recovery (39% of women), and chronically poor functioning (10% of women). When compared to mothers in the highest functioning group, psychosocial characteristics (e.g., depression, stress, and serious life events) were significantly associated with sustained poor functioning one-year following child-birth. Mothers living in nuclear households were more likely to experience chronic poor functioning. Higher education independently predicted maternal function recovery, even when controlling for psychosocial characteristics. Education, above and beyond socio-economic assets, appears to play an important protective role in maternal functional trajectories following childbirth. Public health implications related to maternal function and perinatal mental health are discussed

    Human hypocretin and melanin-concentrating hormone levels are linked to emotion and social interaction

    No full text
    The neurochemical changes underlying human emotions and social behavior are largely unknown. Here we report on the changes in the levels of two hypothalamic neuropeptides, hypocretin-1 (Hcrt-1) and melanin concentrating hormone (MCH), measured in the human amygdala. We show that Hcrt-1 levels are maximal during positive emotion, social interaction, and anger, behaviors that induce cataplexy in human narcoleptics. In contrast, MCH levels are minimal during social interaction, but are increased after eating. Both peptides are at minimal levels during periods of postoperative pain despite high levels of arousal. MCH levels increase at sleep onset, consistent with a role in sleep induction, whereas Hcrt-1 levels increase at wake onset, consistent with a role in wake induction. Levels of these two peptides in humans are not simply linked to arousal, but rather to specific emotions and state transitions. Other arousal systems may be similarly emotionally specialized
    corecore