1,668 research outputs found

    The importance of adjusting for potential confounders in Bayesian hierarchical models synthesising evidence from randomised and non-randomised studies: an application comparing treatments for abdominal aortic aneurysms

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Informing health care decision making may necessitate the synthesis of evidence from different study designs (e.g., randomised controlled trials, non-randomised/observational studies). Methods for synthesising different types of studies have been proposed, but their routine use requires development of approaches to adjust for potential biases, especially among non-randomised studies. The objective of this study was to extend a published Bayesian hierarchical model to adjust for bias due to confounding in synthesising evidence from studies with different designs.</p> <p>Methods</p> <p>In this new methodological approach, study estimates were adjusted for potential confounders using differences in patient characteristics (e.g., age) between study arms. The new model was applied to synthesise evidence from randomised and non-randomised studies from a published review comparing treatments for abdominal aortic aneurysms. We compared the results of the Bayesian hierarchical model adjusted for differences in study arms with: 1) unadjusted results, 2) results adjusted using aggregate study values and 3) two methods for downweighting the potentially biased non-randomised studies. Sensitivity of the results to alternative prior distributions and the inclusion of additional covariates were also assessed.</p> <p>Results</p> <p>In the base case analysis, the estimated odds ratio was 0.32 (0.13,0.76) for the randomised studies alone and 0.57 (0.41,0.82) for the non-randomised studies alone. The unadjusted result for the two types combined was 0.49 (0.21,0.98). Adjusted for differences between study arms, the estimated odds ratio was 0.37 (0.17,0.77), representing a shift towards the estimate for the randomised studies alone. Adjustment for aggregate values resulted in an estimate of 0.60 (0.28,1.20). The two methods used for downweighting gave odd ratios of 0.43 (0.18,0.89) and 0.35 (0.16,0.76), respectively. Point estimates were robust but credible intervals were wider when using vaguer priors.</p> <p>Conclusions</p> <p>Covariate adjustment using aggregate study values does not account for covariate imbalances between treatment arms and downweighting may not eliminate bias. Adjustment using differences in patient characteristics between arms provides a systematic way of adjusting for bias due to confounding. Within the context of a Bayesian hierarchical model, such an approach could facilitate the use of all available evidence to inform health policy decisions.</p

    Bayesian Hierarchical Models Combining Different Study Types and Adjusting for Covariate Imbalances: A Simulation Study to Assess Model Performance

    Get PDF
    BACKGROUND: Bayesian hierarchical models have been proposed to combine evidence from different types of study designs. However, when combining evidence from randomised and non-randomised controlled studies, imbalances in patient characteristics between study arms may bias the results. The objective of this study was to assess the performance of a proposed Bayesian approach to adjust for imbalances in patient level covariates when combining evidence from both types of study designs. METHODOLOGY/PRINCIPAL FINDINGS: Simulation techniques, in which the truth is known, were used to generate sets of data for randomised and non-randomised studies. Covariate imbalances between study arms were introduced in the non-randomised studies. The performance of the Bayesian hierarchical model adjusted for imbalances was assessed in terms of bias. The data were also modelled using three other Bayesian approaches for synthesising evidence from randomised and non-randomised studies. The simulations considered six scenarios aimed at assessing the sensitivity of the results to changes in the impact of the imbalances and the relative number and size of studies of each type. For all six scenarios considered, the Bayesian hierarchical model adjusted for differences within studies gave results that were unbiased and closest to the true value compared to the other models. CONCLUSIONS/SIGNIFICANCE: Where informed health care decision making requires the synthesis of evidence from randomised and non-randomised study designs, the proposed hierarchical Bayesian method adjusted for differences in patient characteristics between study arms may facilitate the optimal use of all available evidence leading to unbiased results compared to unadjusted analyses

    Evidence synthesis as the key to more coherent and efficient research

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Systematic review and meta-analysis currently underpin much of evidence-based medicine. Such methodologies bring order to <it>previous </it>research, but <it>future </it>research planning remains relatively incoherent and inefficient.</p> <p>Methods</p> <p>To outline a framework for evaluation of health interventions, aimed at increasing coherence and efficiency through i) making better use of information contained within the existing evidence-base when designing future studies; and ii) maximising the information available and thus potentially reducing the need for future studies.</p> <p>Results</p> <p>The framework presented insists that an up-to-date meta-analysis of existing randomised controlled trials (RCTs) should always be considered before future trials are conducted. Such a meta-analysis should inform critical design issues such as sample size determination. The contexts in which the use of individual patient data meta-analysis and mixed treatment comparisons modelling may be beneficial before further RCTs are conducted are considered. Consideration should also be given to how any newly planned RCTs would contribute to the totality of evidence through its incorporation into an updated meta-analysis. We illustrate how new RCTs can have very low power to change inferences of an existing meta-analysis, particularly when between study heterogeneity is taken into consideration.</p> <p>Conclusion</p> <p>While the collation of existing evidence as the basis for clinical practice is now routine, a more coherent and efficient approach to planning future RCTs to strengthen the evidence base needs to be developed. The framework presented is a proposal for how this situation can be improved.</p

    IKZF1 Deletions with COBL Breakpoints Are Not Driven by RAG-Mediated Recombination Events in Acute Lymphoblastic Leukemia

    Get PDF
    IKZF1 deletion (ΔIKZF1) is an important predictor of relapse in both childhood and adult B-cell precursor acute lymphoblastic leukemia (B-ALL). Previously, we revealed that COBL is a hotspot for breakpoints in leukemia and could promote IKZF1 deletions. Through an international collaboration, we provide a detailed genetic and clinical picture of B-ALL with COBL rearrangements (COBL-r). Patients with B-ALL and IKZF1 deletion (n = 133) were included. IKZF1 ∆1-8 were associated with large alterations within chromosome 7: monosomy 7 (18%), isochromosome 7q (10%), 7p loss (19%), and interstitial deletions (53%). The latter included COBL-r, which were found in 12% of the IKZF1 ∆1-8 cohort. Patients with COBL-r are mostly classified as intermediate cytogenetic risk and frequently harbor ETV6, PAX5, CDKN2A/B deletions. Overall, 56% of breakpoints were located within COBL intron 5. Cryptic recombination signal sequence motifs were broadly distributed within the sequence of COBL, and no enrichment for the breakpoint cluster region was found. In summary, a diverse spectrum of alterations characterizes ΔIKZF1 and they also include deletion breakpoints within COBL. We confirmed that COBL is a hotspot associated with ΔIKZF1, but these rearrangements are not driven by RAG-mediated recombination

    Automotive Industry Response to its Global QMS Standard ISO/TS-16949

    Get PDF
    With increasing globalization, the intense competition and customer-pressure have spurred many producers from developing/ emerging countries to adopt the best management and organizational practices. The quality issues are paramount for automotive manufacturing. The multiplicity of Quality Management System (QMS) Standards prevalent till the 1990s finally gave way to development of a harmonized automotive industry-specific QMS, namely ISO/TS-16949. This paper analyzes the major factors motivating firms to adopt this Standard: its quality signaling function, especially in international business, and facilitative role in moving up the supply chain. We investigate the inter-national and inter-regional concentration of ISO/TS-16949 certificates and relate those changes to the automotive industry dynamics. Among the top certifying nations - China, India and Brazil included - these certificates and ‘cars and commercial vehicles’ produced are highly correlated. A moderate-to-high worldwide growth of this certification is probable in near future with its gaining popularity among Tier-2 suppliers and for two/ three-wheeler automotive production. The Indian evidence indicates a sizeable proportion of car and commercial vehicle plants being ISO/TS-16949 certified and a high certification incidence among large and medium-large auto component firms. We suggest the creation of a Centre to encourage and prepare SMEs and provide financial assistance for ISO/TS-16949 certification

    An Improved Test for Detecting Multiplicative Homeostatic Synaptic Scaling

    Get PDF
    Homeostatic scaling of synaptic strengths is essential for maintenance of network “gain”, but also poses a risk of losing the distinctions among relative synaptic weights, which are possibly cellular correlates of memory storage. Multiplicative scaling of all synapses has been proposed as a mechanism that would preserve the relative weights among them, because they would all be proportionately adjusted. It is crucial for this hypothesis that all synapses be affected identically, but whether or not this actually occurs is difficult to determine directly. Mathematical tests for multiplicative synaptic scaling are presently carried out on distributions of miniature synaptic current amplitudes, but the accuracy of the test procedure has not been fully validated. We now show that the existence of an amplitude threshold for empirical detection of miniature synaptic currents limits the use of the most common method for detecting multiplicative changes. Our new method circumvents the problem by discarding the potentially distorting subthreshold values after computational scaling. This new method should be useful in assessing the underlying neurophysiological nature of a homeostatic synaptic scaling transformation, and therefore in evaluating its functional significance

    Structural and Mutational Analysis of Functional Differentiation between Synaptotagmins-1 and -7

    Get PDF
    Synaptotagmins are known to mediate diverse forms of Ca2+-triggered exocytosis through their C2 domains, but the principles underlying functional differentiation among them are unclear. Synaptotagmin-1 functions as a Ca2+ sensor in neurotransmitter release at central nervous system synapses, but synaptotagmin-7 does not, and yet both isoforms act as Ca2+ sensors in chromaffin cells. To shed light into this apparent paradox, we have performed rescue experiments in neurons from synaptotagmin-1 knockout mice using a chimera that contains the synaptotagmin-1 sequence with its C2B domain replaced by the synaptotagmin-7 C2B domain (Syt1/7). Rescue was not achieved either with the WT Syt1/7 chimera or with nine mutants where residues that are distinct in synaptotagmin-7 were restored to those present in synaptotagmin-1. To investigate whether these results arise because of unique conformational features of the synaptotagmin-7 C2B domain, we determined its crystal structure at 1.44 Å resolution. The synaptotagmin-7 C2B domain structure is very similar to that of the synaptotagmin-1 C2B domain and contains three Ca2+-binding sites. Two of the Ca2+-binding sites of the synaptotagmin-7 C2B domain are also present in the synaptotagmin-1 C2B domain and have analogous ligands to those determined for the latter by NMR spectroscopy, suggesting that a discrepancy observed in a crystal structure of the synaptotagmin-1 C2B domain arose from crystal contacts. Overall, our results suggest that functional differentiation in synaptotagmins arises in part from subtle sequence changes that yield dramatic functional differences

    Functional MRI in Awake Unrestrained Dogs

    Get PDF
    Because of dogs' prolonged evolution with humans, many of the canine cognitive skills are thought to represent a selection of traits that make dogs particularly sensitive to human cues. But how does the dog mind actually work? To develop a methodology to answer this question, we trained two dogs to remain motionless for the duration required to collect quality fMRI images by using positive reinforcement without sedation or physical restraints. The task was designed to determine which brain circuits differentially respond to human hand signals denoting the presence or absence of a food reward. Head motion within trials was less than 1 mm. Consistent with prior reinforcement learning literature, we observed caudate activation in both dogs in response to the hand signal denoting reward versus no-reward
    corecore