405 research outputs found

    Viscosity Sum Rules at Large Scattering Lengths

    Get PDF
    We use the operator product expansion (OPE) and dispersion relations to obtain new model-independent "Borel-resummed" sum rules for both shear and bulk viscosity of many-body systems of spin-1/2 fermions with predominantly short range S-wave interactions. These sum rules relate Gaussian weights of the frequency-dependent viscosities to the Tan contact parameter C(a). Our results are valid for arbitrary values of the scattering length a, but receive small corrections from operators of dimension larger than 5 in the OPE, and can be used to study transport properties in the vicinity of the infinite scattering length fixed point. In particular, we find that the exact dependence of the shear viscosity sum rule on scattering length is controlled by the function C(a). The sum rules that we obtain depend on a frequency scale w that can be optimized to maximize their overlap with low-energy data

    MKEM: a Multi-level Knowledge Emergence Model for mining undiscovered public knowledge

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Since Swanson proposed the Undiscovered Public Knowledge (UPK) model, there have been many approaches to uncover UPK by mining the biomedical literature. These earlier works, however, required substantial manual intervention to reduce the number of possible connections and are mainly applied to disease-effect relation. With the advancement in biomedical science, it has become imperative to extract and combine information from multiple disjoint researches, studies and articles to infer new hypotheses and expand knowledge.</p> <p>Methods</p> <p>We propose MKEM, a Multi-level Knowledge Emergence Model, to discover implicit relationships using Natural Language Processing techniques such as Link Grammar and Ontologies such as Unified Medical Language System (UMLS) MetaMap. The contribution of MKEM is as follows: First, we propose a flexible knowledge emergence model to extract implicit relationships across different levels such as molecular level for gene and protein and Phenomic level for disease and treatment. Second, we employ MetaMap for tagging biological concepts. Third, we provide an empirical and systematic approach to discover novel relationships.</p> <p>Results</p> <p>We applied our system on 5000 abstracts downloaded from PubMed database. We performed the performance evaluation as a gold standard is not yet available. Our system performed with a good precision and recall and we generated 24 hypotheses.</p> <p>Conclusions</p> <p>Our experiments show that MKEM is a powerful tool to discover hidden relationships residing in extracted entities that were represented by our Substance-Effect-Process-Disease-Body Part (SEPDB) model. </p

    Classification tree analysis of second neoplasms in survivors of childhood cancer

    Get PDF
    BACKGROUND: Reports on childhood cancer survivors estimated cumulative probability of developing secondary neoplasms vary from 3,3% to 25% at 25 years from diagnosis, and the risk of developing another cancer to several times greater than in the general population. METHODS: In our retrospective study, we have used the classification tree multivariate method on a group of 849 first cancer survivors, to identify childhood cancer patients with the greatest risk for development of secondary neoplasms. RESULTS: In observed group of patients, 34 develop secondary neoplasm after treatment of primary cancer. Analysis of parameters present at the treatment of first cancer, exposed two groups of patients at the special risk for secondary neoplasm. First are female patients treated for Hodgkin's disease at the age between 10 and 15 years, whose treatment included radiotherapy. Second group at special risk were male patients with acute lymphoblastic leukemia who were treated at the age between 4,6 and 6,6 years of age. CONCLUSION: The risk groups identified in our study are similar to the results of studies that used more conventional approaches. Usefulness of our approach in study of occurrence of second neoplasms should be confirmed in larger sample study, but user friendly presentation of results makes it attractive for further studies

    COSPAR Sample Safety Assessment Framework (SSAF).

    Get PDF
    The Committee on Space Research (COSPAR) Sample Safety Assessment Framework (SSAF) has been developed by a COSPAR appointed Working Group. The objective of the sample safety assessment would be to evaluate whether samples returned from Mars could be harmful for Earth's systems (e.g., environment, biosphere, geochemical cycles). During the Working Group's deliberations, it became clear that a comprehensive assessment to predict the effects of introducing life in new environments or ecologies is difficult and practically impossible, even for terrestrial life and certainly more so for unknown extraterrestrial life. To manage expectations, the scope of the SSAF was adjusted to evaluate only whether the presence of martian life can be excluded in samples returned from Mars. If the presence of martian life cannot be excluded, a Hold & Critical Review must be established to evaluate the risk management measures and decide on the next steps. The SSAF starts from a positive hypothesis (there is martian life in the samples), which is complementary to the null-hypothesis (there is no martian life in the samples) typically used for science. Testing the positive hypothesis includes four elements: (1) Bayesian statistics, (2) subsampling strategy, (3) test sequence, and (4) decision criteria. The test sequence capability covers self-replicating and non-self-replicating biology and biologically active molecules. Most of the investigations associated with the SSAF would need to be carried out within biological containment. The SSAF is described in sufficient detail to support planning activities for a Sample Receiving Facility (SRF) and for preparing science announcements, while at the same time acknowledging that further work is required before a detailed Sample Safety Assessment Protocol (SSAP) can be developed. The three major open issues to be addressed to optimize and implement the SSAF are (1) setting a value for the level of assurance to effectively exclude the presence of martian life in the samples, (2) carrying out an analogue test program, and (3) acquiring relevant contamination knowledge from all Mars Sample Return (MSR) flight and ground elements. Although the SSAF was developed specifically for assessing samples from Mars in the context of the currently planned NASA-ESA MSR Campaign, this framework and the basic safety approach are applicable to any other Mars sample return mission concept, with minor adjustments in the execution part related to the specific nature of the samples to be returned. The SSAF is also considered a sound basis for other COSPAR Planetary Protection Category V, restricted Earth return missions beyond Mars. It is anticipated that the SSAF will be subject to future review by the various MSR stakeholders

    CD27 distinguishes two phases in bone marrow infiltration of splenic marginal zone lymphoma

    Get PDF
    Aims: To investigate CD27 expression in splenic marginal zone lymphoma (SMZL), an indolent low-grade B-cell lymphoma with constant involvement of the bone marrow, especially with an intrasinusoidal pattern. It is not clear if the neoplastic clone is composed of virgin or somatically mutated B cells. CD27 is reported to be a hallmark of memory B cells. Methods and results: We evaluated 64 bone marrow biopsy specimens (BMBs) from 36 patients with SMZL for the expression of CD27. For comparison, splenectomy specimens of patients with traumatic splenic rupture or with SMZL were used. All BMBs showed lymphomatous infiltration. When located in the marrow sinusoids, neoplastic cells were CD27- in all cases and therefore corresponded to naive B cells. In nodular/interstitial infiltration, the cells were CD27+ and therefore corresponded to memory B cells. No difference in immunohistochemical expression of B and T antibodies was found between intrasinusoidal and interstitial/nodular infiltration. CD27 was constantly expressed in the splenic marginal zone of normal spleen, surgically removed for trauma, and in seven out of 10 spleens with SMZL. Conclusion: We propose the existence of two different phases of neoplastic progression with, first, expansion of a virgin B clone in the bone marrow and, following exposure to antigen, a re-colonization of the bone marrow

    Locomotor changes in length and EMG activity of feline medial gastrocnemius muscle following paralysis of two synergists

    Get PDF
    The mechanism of the compensatory increase in electromyographic activity (EMG) of a cat ankle extensor during walking shortly after paralysis of its synergists is not fully understood. It is possible that due to greater ankle flexion in stance in this situation, muscle spindles are stretched to a greater extent and, thus, contribute to the EMG enhancement. However, also changes in force feedback and central drive may play a role. The aim of the present study was to investigate the short-term (1- to 2-week post-op) effects of lateral gastrocnemius (LG) and soleus (SO) denervation on muscle fascicle and muscle–tendon unit (MTU) length changes, as well as EMG activity of the intact medial gastrocnemius (MG) muscle in stance during overground walking on level (0%), downslope (−50%, presumably enhancing stretch of ankle extensors in stance) and upslope (+50%, enhancing load on ankle extensors) surfaces. Fascicle length was measured directly using sonomicrometry, and MTU length was calculated from joint kinematics. For each slope condition, LG-SO denervation resulted in an increase in MTU stretch and peak stretch velocity of the intact MG in early stance. MG muscle fascicle stretch and peak stretch velocity were also higher than before denervation in downslope walking. Denervation significantly decreased the magnitude of MG fascicle shortening and peak shortening velocity during early stance in level and upslope walking. MG EMG magnitude in the swing and stance phases was substantially greater after denervation, with a relatively greater increase during stance of level and upslope walking. These results suggest that the fascicle length patterns of MG muscle are significantly altered when two of its synergists are in a state of paralysis. Further, the compensatory increase in MG EMG is likely mediated by enhanced MG length feedback during downslope walking, enhanced feedback from load-sensitive receptors during upslope walking and enhanced central drive in all walking conditions

    Differentiation of neurons from neural precursors generated in floating spheres from embryonic stem cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neural differentiation of embryonic stem (ES) cells is usually achieved by induction of ectoderm in embryoid bodies followed by the enrichment of neuronal progenitors using a variety of factors. Obtaining reproducible percentages of neural cells is difficult and the methods are time consuming.</p> <p>Results</p> <p>Neural progenitors were produced from murine ES cells by a combination of nonadherent conditions and serum starvation. Conversion to neural progenitors was accompanied by downregulation of <it>Oct4 </it>and <it>NANOG </it>and increased expression of <it>nestin</it>. ES cells containing a GFP gene under the control of the <it>Sox1 </it>regulatory regions became fluorescent upon differentiation to neural progenitors, and ES cells with a tau-GFP fusion protein became fluorescent upon further differentiation to neurons. Neurons produced from these cells upregulated mature neuronal markers, or differentiated to glial and oligodendrocyte fates. The neurons gave rise to action potentials that could be recorded after application of fixed currents.</p> <p>Conclusion</p> <p>Neural progenitors were produced from murine ES cells by a novel method that induced neuroectoderm cells by a combination of nonadherent conditions and serum starvation, in contrast to the embryoid body method in which neuroectoderm cells must be selected after formation of all three germ layers.</p

    Automation of a problem list using natural language processing

    Get PDF
    BACKGROUND: The medical problem list is an important part of the electronic medical record in development in our institution. To serve the functions it is designed for, the problem list has to be as accurate and timely as possible. However, the current problem list is usually incomplete and inaccurate, and is often totally unused. To alleviate this issue, we are building an environment where the problem list can be easily and effectively maintained. METHODS: For this project, 80 medical problems were selected for their frequency of use in our future clinical field of evaluation (cardiovascular). We have developed an Automated Problem List system composed of two main components: a background and a foreground application. The background application uses Natural Language Processing (NLP) to harvest potential problem list entries from the list of 80 targeted problems detected in the multiple free-text electronic documents available in our electronic medical record. These proposed medical problems drive the foreground application designed for management of the problem list. Within this application, the extracted problems are proposed to the physicians for addition to the official problem list. RESULTS: The set of 80 targeted medical problems selected for this project covered about 5% of all possible diagnoses coded in ICD-9-CM in our study population (cardiovascular adult inpatients), but about 64% of all instances of these coded diagnoses. The system contains algorithms to detect first document sections, then sentences within these sections, and finally potential problems within the sentences. The initial evaluation of the section and sentence detection algorithms demonstrated a sensitivity and positive predictive value of 100% when detecting sections, and a sensitivity of 89% and a positive predictive value of 94% when detecting sentences. CONCLUSION: The global aim of our project is to automate the process of creating and maintaining a problem list for hospitalized patients and thereby help to guarantee the timeliness, accuracy and completeness of this information

    Time-Ordered Networks Reveal Limitations to Information Flow in Ant Colonies

    Get PDF
    BACKGROUND: An important function of many complex networks is to inhibit or promote the transmission of disease, resources, or information between individuals. However, little is known about how the temporal dynamics of individual-level interactions affect these networks and constrain their function. Ant colonies are a model comparative system for understanding general principles linking individual-level interactions to network-level functions because interactions among individuals enable integration of multiple sources of information to collectively make decisions, and allocate tasks and resources. METHODOLOGY/FINDINGS: Here we show how the temporal and spatial dynamics of such individual interactions provide upper bounds to rates of colony-level information flow in the ant Temnothorax rugatulus. We develop a general framework for analyzing dynamic networks and a mathematical model that predicts how information flow scales with individual mobility and group size. CONCLUSIONS/SIGNIFICANCE: Using thousands of time-stamped interactions between uniquely marked ants in four colonies of a range of sizes, we demonstrate that observed maximum rates of information flow are always slower than predicted, and are constrained by regulation of individual mobility and contact rate. By accounting for the ordering and timing of interactions, we can resolve important difficulties with network sampling frequency and duration, enabling a broader understanding of interaction network functioning across systems and scales
    corecore