18 research outputs found

    Lung macrophage scavenger receptor SR-A6 (MARCO) is an adenovirus type-specific virus entry receptor

    Get PDF
    <div><p>Macrophages are a diverse group of phagocytic cells acting in host protection against stress, injury, and pathogens. Here, we show that the scavenger receptor SR-A6 is an entry receptor for human adenoviruses in murine alveolar macrophage-like MPI cells, and important for production of type I interferon. Scavenger receptors contribute to the clearance of endogenous proteins, lipoproteins and pathogens. Knockout of SR-A6 in MPI cells, anti-SR-A6 antibody or the soluble extracellular SR-A6 domain reduced adenovirus type-C5 (HAdV-C5) binding and transduction. Expression of murine SR-A6, and to a lower extent human SR-A6 boosted virion binding to human cells and transduction. Virion clustering by soluble SR-A6 and proximity localization with SR-A6 on MPI cells suggested direct adenovirus interaction with SR-A6. Deletion of the negatively charged hypervariable region 1 (HVR1) of hexon reduced HAdV-C5 binding and transduction, implying that the viral ligand for SR-A6 is hexon. SR-A6 facilitated macrophage entry of HAdV-B35 and HAdV-D26, two important vectors for transduction of hematopoietic cells and human vaccination. The study highlights the importance of scavenger receptors in innate immunity against human viruses.</p></div

    Mast cells participate in allograft rejection: can IL-37 play an inhibitory role?

    No full text
    Objective: The aim of this study was to evaluate the role of mast cells (MCs) in allograft rejection, eventually inhibited by IL-37. Immune cells including MCs participate in allograft rejection by generating IL-1, IL-33, TNF and other cytokines. Methods: We evaluated allograft rejection on the experience of our experimental data and using the relevant literature. Results: MCs are involved in initiation and regulation of innate and adaptive immune responses-pathways. MCs are important pro-inflammatory cells which express high-affinity receptor FceRI and can be activated by IgE and some pro-inflammatory cytokines, such as IL-1 and IL-33. The cross-linkage of high affinity IgE receptor on MCs by antigen ligation has a crucial role in allergy, asthma, anaphylaxis, cancer and allograft rejection. MCs mediate immunity in organ transplant, leading to the activation of allospecific T cells implicated in the rejection and generate pro-inflammatory cytokines/chemokines. IL-1 pro-inflammatory cytokine family members released by MCs mediate allograft rejection and inflammation. IL-37 is also an IL-1 family member generated by macrophage cell line in small amounts, which binds to IL-18R\u3b1 and produces an anti-inflammatory effect. IL-37 provokes the inhibition of TLR signaling, TLR-induced mTOR and (MyD88)-mediated responses, suppressing pro-inflammatory IL-1 family members and increasing IL-10. Conclusion: IL-37 inhibition offers the opportunity to immunologically modulate MCs, by suppressing their production of IL-1 family members and reducing the risk of allograft rejection, resulting as a potential good therapeutic new cytokine. Here, we report the relationship between inflammatory MCs, allograft rejection and pro-inflammatory and anti-inflammatory IL-37

    Mutation-dependent recessive inheritance of NPHS2-associated steroid-resistant nephrotic syndrome

    Get PDF
    Monogenic disorders result from defects in a single gene. According to Mendel's laws, these disorders are inherited in either a recessive or dominant fashion. Autosomal-recessive disorders require a disease-causing variant on both alleles, and according to our current understanding, their pathogenicities are not influenced by each other. Here we present an autosomal-recessive disorder, nephrotic syndrome type 2 (MIM 600995), in which the pathogenicity of an NPHS2 allele encoding p.Arg229Gln depends on the trans-associated mutation. We show that, contrary to expectations, this allele leads to a disease phenotype only when it is associated specifically with certain 3' NPHS2 mutations because of an altered heterodimerization and mislocalization of the encoded p.Arg229Gln podocin. The disease-associated 3' mutations exert a dominant-negative effect on p.Arg229Gln podocin but behave as recessive alleles when associated with wild-type podocin. Therefore, the transmission rates for couples carrying the disease-associated mutations and p.Arg229Gln may be substantially different from those expected in autosomal-recessive disorders
    corecore