305 research outputs found

    Thermal States as Universal Resources for Quantum Computation with Always-On Interactions

    Get PDF
    Measurement-based quantum computation utilizes an initial entangled resource state and proceeds with subsequent single-qubit measurements. It is implicitly assumed that the interactions between qubits can be switched off so that the dynamics of the measured qubits do not affect the computation. By proposing a model spin Hamiltonian, we demonstrate that measurement-based quantum computation can be achieved on a thermal state with always-on interactions. Moreover, computational errors induced by thermal fluctuations can be corrected and thus the computation can be executed fault tolerantly if the temperature is below a threshold value

    Noiseless Linear Amplification and Distillation of Entanglement

    Full text link
    The idea of signal amplification is ubiquitous in the control of physical systems, and the ultimate performance limit of amplifiers is set by quantum physics. Increasing the amplitude of an unknown quantum optical field, or more generally any harmonic oscillator state, must introduce noise. This linear amplification noise prevents the perfect copying of the quantum state, enforces quantum limits on communications and metrology, and is the physical mechanism that prevents the increase of entanglement via local operations. It is known that non-deterministic versions of ideal cloning and local entanglement increase (distillation) are allowed, suggesting the possibility of non-deterministic noiseless linear amplification. Here we introduce, and experimentally demonstrate, such a noiseless linear amplifier for continuous-variables states of the optical field, and use it to demonstrate entanglement distillation of field-mode entanglement. This simple but powerful circuit can form the basis of practical devices for enhancing quantum technologies. The idea of noiseless amplification unifies approaches to cloning and distillation, and will find applications in quantum metrology and communications.Comment: Submitted 10 June 200

    Non-Gaussian states for continuous variable quantum computation via Gaussian maps

    Get PDF
    We investigate non-Gaussian states of light as ancillary inputs for generating nonlinear transformations required for quantum computing with continuous variables. We consider a recent proposal for preparing a cubic phase state, find the exact form of the prepared state and perform a detailed comparison to the ideal cubic phase state. We thereby identify the main challenges to preparing an ideal cubic phase state and describe the gates implemented with the non-ideal prepared state. We also find the general form of operations that can be implemented with ancilla Fock states, together with Gaussian input states, linear optics and squeezing transformations, and homodyne detection with feed forward, and discuss the feasibility of continuous variable quantum computing using ancilla Fock states.Comment: 8 pages, 6 figure

    Quantum memory for entangled two-mode squeezed states

    Full text link
    A quantum memory for light is a key element for the realization of future quantum information networks. Requirements for a good quantum memory are (i) versatility (allowing a wide range of inputs) and (ii) true quantum coherence (preserving quantum information). Here we demonstrate such a quantum memory for states possessing Einstein-Podolsky-Rosen (EPR) entanglement. These multi-photon states are two-mode squeezed by 6.0 dB with a variable orientation of squeezing and displaced by a few vacuum units. This range encompasses typical input alphabets for a continuous variable quantum information protocol. The memory consists of two cells, one for each mode, filled with cesium atoms at room temperature with a memory time of about 1msec. The preservation of quantum coherence is rigorously proven by showing that the experimental memory fidelity 0.52(2) significantly exceeds the benchmark of 0.45 for the best possible classical memory for a range of displacements.Comment: main text 5 pages, supplementary information 3 page

    Orthokeratinized Odontogenic Cyst of the Mandible with Heterotopic Cartilage

    Get PDF
    Cartilaginous metaplasia is a rare but well-documented phenomenon occurring in the wall of odontogenic keratocyst. The mural cartilage not associated with odontogenic keratocyst has been reported only once in a maxillary teratoid cyst of congenital origin to our knowledge. A case presented is a 38-year-old man with intraosseous keratinizing epidermoid cyst in the mandible, the wall of which contained a nodule of mature hyaline cartilage. The present lesion likely represents a previously undescribed, histologic hybrid consisting of orthokeratinized odontogenic cyst and cartilaginous heterotopia

    Photonic quantum technologies

    Full text link
    The first quantum technology, which harnesses uniquely quantum mechanical effects for its core operation, has arrived in the form of commercially available quantum key distribution systems that achieve enhanced security by encoding information in photons such that information gained by an eavesdropper can be detected. Anticipated future quantum technologies include large-scale secure networks, enhanced measurement and lithography, and quantum information processors, promising exponentially greater computation power for particular tasks. Photonics is destined for a central role in such technologies owing to the need for high-speed transmission and the outstanding low-noise properties of photons. These technologies may use single photons or quantum states of bright laser beams, or both, and will undoubtably apply and drive state-of-the-art developments in photonics

    Aging Skin: Nourishing from Out-In. Lessons from Wound Healing

    Get PDF
    Skin lesion therapy, peculiarly in the elderly, cannot be isolated from understanding that the skin is an important organ consisting of different tissues. Furthermore, dermis health is fundamental for epidermis integrity, and so adequate nourishment is mandatory in maintaining skin integrity. The dermis nourishes the epidermis, and a healthy epidermis protects the dermis from the environment, so nourishing the dermis through the epidermal barrier is a technical problem yet to be resolved. This is also a consequence of the laws and regulations restricting cosmetics, which cannot have properties that pass the epidermal layer. There is higher investment in cosmetics than in the pharmaceutical industry dealing with skin therapies, because the costs of drug registration are enormous and the field is unprofitable. Still, wound healing may be seen as an opportunity to “feed” the dermis directly. It could also verify whether providing substrates could promote efficient healing and test optimal skin integrity maintenance, if not skin rejuvenation, in an ever aging population

    An Essential Role for the Proximal but Not the Distal Cytoplasmic Tail of Glycoprotein M in Murid Herpesvirus 4 Infection

    Get PDF
    Murid herpesvirus-4 (MuHV-4) provides a tractable model with which to define common, conserved features of gamma-herpesvirus biology. The multi-membrane spanning glycoprotein M (gM) is one of only 4 glycoproteins that are essential for MuHV-4 lytic replication. gM binds to gN and is thought to function mainly secondary envelopment and virion egress, for which several predicted trafficking motifs in its C-terminal cytoplasmic tail could be important. We tested the contribution of the gM cytoplasmic tail to MuHV-4 lytic replication by making recombinant viruses with varying C-terminal deletions. Removing an acidic cluster and a distal YXXΦ motif altered the capsid distribution somewhat in infected cells but had little effect on virus replication, either in vitro or in vivo. In contrast, removing a proximal YXXΦ motif as well completely prevented productive replication. gM was still expressed, but unlike its longer forms showed only limited colocalization with co-transfected gN, and in the context of whole virus appeared to support gN expression less well. We conclude that some elements of the gM cytoplasmic tail are dispensible for MuHV-4 replication, but the tail as a whole is not

    Drilling their own graves:How the European oil and gas supermajors avoid sustainability tensions through mythmaking

    Get PDF
    This study explores how paradoxical tensions between economic growth and environmental protection are avoided through organizational mythmaking. By examining the European oil and gas supermajors’ ‘‘CEOspeak’’ about climate change, we show how mythmaking facilitates the disregarding, diverting, and/or displacing of sustainability tensions. In doing so, our findings further illustrate how certain defensive responses are employed: (1) regression, or retreating to the comforts of past familiarities, (2) fantasy, or escaping the harsh reality that fossil fuels and climate change are indeed irreconcilable, and (3) projecting, or shifting blame to external actors for failing to address climate change. By highlighting the discursive effects of enacting these responses, we illustrate how the European oil and gas supermajors self-determine their inability to substantively address the complexities of climate change. We thus argue that defensive responses are not merely a form of mismanagement as the paradox and corporate sustainability literature commonly suggests, but a strategic resource that poses serious ethical concerns given the imminent danger of issues such as climate change
    corecore