562 research outputs found

    Steel fibre reinforced concrete for elements failing in bending and in shear

    Get PDF
    Discrete steel fibres can increase significantly the bending and the shear resistance of concrete structural elements when Steel Fibre Reinforced Concrete (SFRC) is designed in such a way that fibre reinforcing mechanisms are optimized. To assess the fibre reinforcement effectiveness in shallow structural elements failing in bending and in shear, experimental and numerical research were performed. Uniaxial compression and bending tests were executed to derive the constitutive laws of the developed SFRC. Using a cross-section layered model and the material constitutive laws, the deformational behaviour of structural elements failing in bending was predicted from the moment-curvature relationship of the representative cross sections. To evaluate the influence of the percentage of fibres on the shear resistance of shallow structures, three point bending tests with shallow beams were performed. The applicability of the formulation proposed by RILEM TC 162-TDF for the prediction of the shear resistance of SFRC elements was evaluated. Inverse analysis was adopted to determine indirectly the values of the fracture mode I parameters of the developed SFRC. With these values, and using a softening diagram for modelling the crack shear softening behaviour, the response of the SFRC beams failing in shear was predicted.Fundação para a Ciência e a Tecnologia (FCT

    Identifying hotspots for ecosystem restoration across heterogeneous tropical savannah-dominated regions.

    Get PDF
    This is the final version. Available from the Royal Society via the DOI in this record. There is high potential for ecosystem restoration across tropical savannah-dominated regions, but the benefits that could be gained from this restoration are rarely assessed. This study focuses on the Brazilian Cerrado, a highly species-rich savannah-dominated region, as an exemplar to review potential restoration benefits using three metrics: net biomass gains, plant species richness and ability to connect restored and native vegetation. Localized estimates of the most appropriate restoration vegetation type (grassland, savannah, woodland/forest) for pasturelands are produced. Carbon sequestration potential is significant for savannah and woodland/forest restoration in the seasonally dry tropics (net biomass gains of 58.2 ± 37.7 and 130.0 ± 69.4 Mg ha-1). Modelled restoration species richness gains were highest in the central and south-east of the Cerrado for savannahs and grasslands, and in the west and north-west for woodlands/forests. The potential to initiate restoration projects across the whole of the Cerrado is high and four hotspot areas are identified. We demonstrate that landscape restoration across all vegetation types within heterogeneous tropical savannah-dominated regions can maximize biodiversity and carbon gains. However, conservation of existing vegetation is essential to minimizing the cost and improving the chances of restoration success. This article is part of the theme issue 'Understanding forest landscape restoration: reinforcing scientific foundations for the UN Decade on Ecosystem Restoration'.Natural Environment Research Council (NERC)Natural Environment Research CouncilFAPESP (São Paulo Research Foundation)NordesteUKR

    Effect of having private health insurance on the use of health care services: the case of Spain

    Get PDF
    Background: Several stakeholders have undertaken initiatives to propose solutions towards a more sustainable health system and Spain, as an example of a European country affected by austerity measures, is looking for ways to cut healthcare budgets. Methods: The aim of this paper is to study the effect of private health insurance on health care utilization using the latest micro-data from the European Community Household Panel (ECHP), the Spanish National Health Survey (SNHS) and the European Union Statistics on Income and Living Conditions (EU-SILC). We use matching techniques based on propensity score methods: single match, four matches, bias-adjustment and allowing for heteroskedasticity. Results: The results demonstrate that people with a private health insurance, use the public health system less than individuals without double health insurance coverage. Conclusions: Our conclusions are useful when policy makers design public-private partnership policie

    Stress distribution patterns at mini-implant site during retraction and intrusion - a three-dimensional finite element study

    Get PDF
    Abstract Background The purpose of this study was to evaluate the stress patterns produced in mini-implant and alveolar bone, for various implant dimensions, under different directions of simulated orthodontic force, using a three-dimensional finite element method. Methods Eight finite element (FE) models of mini-implant and bone were generated with insertion angles of 30° and 60°, diameters of 1 and 1.3 mm, and lengths of 6 and 8 mm. A simulated constant orthodontic force of 2 N was applied to each of these FE models in three directions simulating anterior retraction, anterior intrusion and retraction, and molar intrusion. Results Comparison of the maximum von Mises stress in the mini-implant showed that the 1-mm diameter produced significantly high stress, and the amount of stress produced was more for a mini-implant inserted at an angle of 60°. The cortical bone showed that high stresses were generated for the 1-mm-diameter mini-implant and on increasing the insertion angulation from 30° to 60°, the stress produced increased as well. The comparison of von Mises stress in the cancellous bone was insignificant as the amount of stress transmitted was very low. Conclusions The 1-mm-diameter mini-implants are not safe to be used clinically for orthodontic anchorage. The 1.3 × 6 mm dimension mini-implants are recommended for use during anterior segment retraction and during simultaneous intrusion and retraction, and the 1.3 × 8 mm dimension mini-implant is recommended for use during molar intrusion. All mini-implants should be inserted at a 30° angle into the bone for reduced stress and improved stability

    Comparative Structural Analysis of Lipid Binding START Domains

    Get PDF
    Steroidogenic acute regulatory (StAR) protein related lipid transfer (START) domains are small globular modules that form a cavity where lipids and lipid hormones bind. These domains can transport ligands to facilitate lipid exchange between biological membranes, and they have been postulated to modulate the activity of other domains of the protein in response to ligand binding. More than a dozen human genes encode START domains, and several of them are implicated in a disease.We report crystal structures of the human STARD1, STARD5, STARD13 and STARD14 lipid transfer domains. These represent four of the six functional classes of START domains.Sequence alignments based on these and previously reported crystal structures define the structural determinants of human START domains, both those related to structural framework and those involved in ligand specificity.This article can also be viewed as an enhanced version in which the text of the article is integrated with interactive 3D representations and animated transitions. Please note that a web plugin is required to access this enhanced functionality. Instructions for the installation and use of the web plugin are available in Text S1

    Griseofulvin stabilizes microtubule dynamics, activates p53 and inhibits the proliferation of MCF-7 cells synergistically with vinblastine

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Griseofulvin, an antifungal drug, has recently been shown to inhibit proliferation of various types of cancer cells and to inhibit tumor growth in athymic mice. Due to its low toxicity, griseofulvin has drawn considerable attention for its potential use in cancer chemotherapy. This work aims to understand how griseofulvin suppresses microtubule dynamics in living cells and sought to elucidate the antimitotic and antiproliferative action of the drug.</p> <p>Methods</p> <p>The effects of griseofulvin on the dynamics of individual microtubules in live MCF-7 cells were measured by confocal microscopy. Immunofluorescence microscopy, western blotting and flow cytometry were used to analyze the effects of griseofulvin on spindle microtubule organization, cell cycle progression and apoptosis. Further, interactions of purified tubulin with griseofulvin were studied <it>in vitro </it>by spectrophotometry and spectrofluorimetry. Docking analysis was performed using autodock4 and LigandFit module of Discovery Studio 2.1.</p> <p>Results</p> <p>Griseofulvin strongly suppressed the dynamic instability of individual microtubules in live MCF-7 cells by reducing the rate and extent of the growing and shortening phases. At or near half-maximal proliferation inhibitory concentration, griseofulvin dampened the dynamicity of microtubules in MCF-7 cells without significantly disrupting the microtubule network. Griseofulvin-induced mitotic arrest was associated with several mitotic abnormalities like misaligned chromosomes, multipolar spindles, misegregated chromosomes resulting in cells containing fragmented nuclei. These fragmented nuclei were found to contain increased concentration of p53. Using both computational and experimental approaches, we provided evidence suggesting that griseofulvin binds to tubulin in two different sites; one site overlaps with the paclitaxel binding site while the second site is located at the αβ intra-dimer interface. In combination studies, griseofulvin and vinblastine were found to exert synergistic effects against MCF-7 cell proliferation.</p> <p>Conclusions</p> <p>The study provided evidence suggesting that griseofulvin shares its binding site in tubulin with paclitaxel and kinetically suppresses microtubule dynamics in a similar manner. The results revealed the antimitotic mechanism of action of griseofulvin and provided evidence suggesting that griseofulvin alone and/or in combination with vinblastine may have promising role in breast cancer chemotherapy.</p
    corecore