16 research outputs found

    High aboveground carbon stock of African tropical montane forests

    Get PDF
    Tropical forests store 40–50 per cent of terrestrial vegetation carbon1. However, spatial variations in aboveground live tree biomass carbon (AGC) stocks remain poorly understood, in particular in tropical montane forests2. Owing to climatic and soil changes with increasing elevation3, AGC stocks are lower in tropical montane forests compared with lowland forests2. Here we assemble and analyse a dataset of structurally intact old-growth forests (AfriMont) spanning 44 montane sites in 12 African countries. We find that montane sites in the AfriMont plot network have a mean AGC stock of 149.4 megagrams of carbon per hectare (95% confidence interval 137.1–164.2), which is comparable to lowland forests in the African Tropical Rainforest Observation Network4 and about 70 per cent and 32 per cent higher than averages from plot networks in montane2,5,6 and lowland7 forests in the Neotropics, respectively. Notably, our results are two-thirds higher than the Intergovernmental Panel on Climate Change default values for these forests in Africa8. We find that the low stem density and high abundance of large trees of African lowland forests4 is mirrored in the montane forests sampled. This carbon store is endangered: we estimate that 0.8 million hectares of old-growth African montane forest have been lost since 2000. We provide country-specific montane forest AGC stock estimates modelled from our plot network to help to guide forest conservation and reforestation interventions. Our findings highlight the need for conserving these biodiverse9,10 and carbon-rich ecosystems

    High above-ground carbon stock of African tropical montane forests

    Get PDF
    Tropical forests store 40–50 per cent of terrestrial vegetation carbon1. However, spatial variations in aboveground live tree biomass carbon (AGC) stocks remain poorly understood, in particular in tropical montane forests2. Owing to climatic and soil changes with increasing elevation3, AGC stocks are lower in tropical montane forests compared with lowland forests2. Here we assemble and analyse a dataset of structurally intact old-growth forests (AfriMont) spanning 44 montane sites in 12 African countries. We find that montane sites in the AfriMont plot network have a mean AGC stock of 149.4 megagrams of carbon per hectare (95% confidence interval 137.1–164.2), which is comparable to lowland forests in the African Tropical Rainforest Observation Network4 and about 70 per cent and 32 per cent higher than averages from plot networks in montane2,5,6 and lowland7 forests in the Neotropics, respectively. Notably, our results are two-thirds higher than the Intergovernmental Panel on Climate Change default values for these forests in Africa8. We find that the low stem density and high abundance of large trees of African lowland forests4 is mirrored in the montane forests sampled. This carbon store is endangered: we estimate that 0.8 million hectares of old-growth African montane forest have been lost since 2000. We provide country-specific montane forest AGC stock estimates modelled from our plot network to help to guide forest conservation and reforestation interventions. Our findings highlight the need for conserving these biodiverse9,10 and carbon-rich ecosystems

    The E-Coach technology-assisted care transition system: a pragmatic randomized trial

    No full text
    Care transitions from the hospital to home remain a vulnerable time for many patients, especially for those with heart failure (CHF) and chronic obstructive pulmonary disease (COPD). Despite regular use in chronic disease management, it remains unclear how technology can best support patients during their transition from the hospital. We sought to evaluate the impact of a technology-supported care transition support program on hospitalizations, days out of the community and mortality. Using a pragmatic randomized trial, we enrolled patients (511 enrolled, 478 analyzed) hospitalized with CHF/COPD to E-Coach, an intervention with condition-specific customization and in-hospital and post-discharge support by a care transition nurse (CTN), interactive voice response post-discharge calls, and CTN follow-up versus usual post-discharge care (UC). The primary outcome was 30-day rehospitalization. Secondary outcomes included (1) rehospitalization and death and (2) days in the hospital and out of the community. E-Coach and UC groups were similar at baseline except for gender imbalance (p = 0.02). After adjustment for gender, our primary outcome, 30-day rehospitalization rates did not differ between the E-Coach and UC groups (15.0 vs. 16.3 %, adjusted hazard ratio [95 % confidence interval]: 0.94 [0.60, 1.49]). However, in the COPD subgroup, E-Coach was associated with significantly fewer days in the hospital (0.5 vs. 1.6, p = 0.03). E-Coach, an IVR-augmented care transition intervention did not reduce rehospitalization. The positive impact on our secondary outcome (days in hospital) among COPD patients, but not in CHF, may suggest that E-Coach may be more beneficial among patients with COPD.NIH trial registry number: NCT01135381Trial Protocol: http://dx.doi.org/ 10.1016/j.cct.2012.08.007
    corecore