22 research outputs found

    GRB 021004: A Possible Shell Nebula around a Wolf-Rayet Star Gamma-Ray Burst Progenitor

    Get PDF
    The rapid localization of GRB 021004 by the HETE-2 satellite allowed nearly continuous monitoring of its early optical afterglow decay, as well as high-quality optical spectra that determined a redshift of z3=2.328 for its host galaxy, an active starburst galaxy with strong Lyman-alpha emission and several absorption lines. Spectral observations show multiple absorbers at z3A=2.323, z3B= 2.317, and z3C= 2.293 blueshifted by 450, 990, and 3,155 km/s respectively relative to the host galaxy Lyman-alpha emission. We argue that these correspond to a fragmented shell nebula that has been radiatively accelerated by the gamma-ray burst (GRB) afterglow at a distance greater than 0.3 pc from a Wolf-Rayet star progenitor. The chemical abundance ratios indicate that the nebula is overabundant in carbon and silicon. The high level of carbon and silicon is consistent with a swept-up shell nebula gradually enriched by a WCL progenitor wind over the lifetime of the nebula prior to the GRB onset. The detection of statistically significant fluctuations and color changes about the jet-like optical decay further supports this interpretation since fluctuations must be present at some level due to inhomogeneities in a clumpy stellar wind medium or if the progenitor has undergone massive ejection prior to the GRB onset. This evidence suggests that the mass-loss process in a Wolf-Rayet star might lead naturally to an iron-core collapse with sufficient angular momentum that could serve as a suitable GRB progenitor.Comment: Replaced with version accepted by ApJ; 40 pages, 9 figure

    Zig Zag symmetry in AdS/CFT duality

    Full text link
    The validity of the Bianchi identity, which is intimately connected with the zig zag symmetry, is established, for piecewise continuous contours, in the context of Polakov's gauge field-string connection in the large 'tHooft coupling limit, according to which the chromoelectric `string' propagates in five dimensions with its ends attached on a Wilson loop in four dimensions. An explicit check in the wavy line approximation is presented.Comment: 24 pages version to appear in EPJ

    A genetic history of the pre-contact Caribbean

    Get PDF
    Humans settled the Caribbean about 6,000 years ago, and ceramic use and intensified agriculture mark a shift from the Archaic to the Ceramic Age at around 2,500 years ago1,2,3. Here we report genome-wide data from 174 ancient individuals from The Bahamas, Haiti and the Dominican Republic (collectively, Hispaniola), Puerto Rico, Curaçao and Venezuela, which we co-analysed with 89 previously published ancient individuals. Stone-tool-using Caribbean people, who first entered the Caribbean during the Archaic Age, derive from a deeply divergent population that is closest to Central and northern South American individuals; contrary to previous work4, we find no support for ancestry contributed by a population related to North American individuals. Archaic-related lineages were >98% replaced by a genetically homogeneous ceramic-using population related to speakers of languages in the Arawak family from northeast South America; these people moved through the Lesser Antilles and into the Greater Antilles at least 1,700 years ago, introducing ancestry that is still present. Ancient Caribbean people avoided close kin unions despite limited mate pools that reflect small effective population sizes, which we estimate to be a minimum of 500–1,500 and a maximum of 1,530–8,150 individuals on the combined islands of Puerto Rico and Hispaniola in the dozens of generations before the individuals who we analysed lived. Census sizes are unlikely to be more than tenfold larger than effective population sizes, so previous pan-Caribbean estimates of hundreds of thousands of people are too large5,6. Confirming a small and interconnected Ceramic Age population7, we detect 19 pairs of cross-island cousins, close relatives buried around 75 km apart in Hispaniola and low genetic differentiation across islands. Genetic continuity across transitions in pottery styles reveals that cultural changes during the Ceramic Age were not driven by migration of genetically differentiated groups from the mainland, but instead reflected interactions within an interconnected Caribbean world1,8.This work was supported by a grant from the National Geographic Society to M. Pateman to facilitate analysis of skeletal material from The Bahamas and by a grant from the Italian ‘Ministry of Foreign Affairs and International Cooperation’ (Italian archaeological, anthropological and ethnological missions abroad, DGPSP Ufficio VI). D.R. was funded by NSF HOMINID grant BCS-1032255, NIH (NIGMS) grant GM100233, the Paul Allen Foundation, the John Templeton Foundation grant 61220 and the Howard Hughes Medical Institute.Peer reviewe

    In Vivo Ectopic Implantation Model to Assess Human Mesenchymal Progenitor Cell Potential

    Get PDF
    Clinical interest on human mesenchymal progenitor cells (hMPC) relies on their potential applicability in cell-based therapies. An in vitro characterization is usually performed in order to define MPC potency. However, in vitro predictions not always correlate with in vivo results and thus there is no consensus in how to really assess cell potency. Our goal was to provide an in vivo testing method to define cell behavior before therapeutic usage, especially for bone tissue engineering applications. In this context, we wondered whether bone marrow stromal cells (hBMSC) would proceed in an osteogenic microenvironment. Based on previous approaches, we developed a fibrin/ceramic/BMP-2/hBMSCs compound. We implanted the compound during only 2 weeks in NOD-SCID mice, either orthotopically to assess its osteoinductive property or subcutaneously to analyze its adequacy as a cell potency testing method. Using fluorescent cell labeling and immunohistochemistry techniques, we could ascertain cell differentiation to bone, bone marrow, cartilage, adipocyte and fibrous tissue. We observed differences in cell potential among different batches of hBMSCs, which did not strictly correlate with in vitro analyses. Our data indicate that the method we have developed is reliable, rapid and reproducible to define cell potency, and may be useful for testing cells destined to bone tissue engineering purposes. Additionally, results obtained with hMPCs from other sources indicate that our method is suitable for testing any potentially implantable mesenchymal cell. Finally, we propose that this model could successfully be employed for bone marrow niche and bone tumor studies. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s12015-013-9464-1) contains supplementary material, which is available to authorized users
    corecore