21 research outputs found

    The Conservation of VIT1-Dependent Iron Distribution in Seeds

    Get PDF
    One third of people suffer from anemia, with iron (Fe) deficiency being the most common reason. The human diet includes seeds of staple crops, which contain Fe that is poorly bioavailable. One reason for low bioavailability is that these seeds store Fe in cellular compartments that also contain antinutrients, such as phytate. Thus, several studies have focused on decreasing phytate concentrations. In theory, as an alternative approach, Fe reserves might be directed to cellular compartments that are free of phytate, such as plastids. However, it is not known if seed plastid can represent a major Fe storage compartment in nature. To discover distinct types of Fe storage in nature, we investigated metal localizations in the seeds of more than twenty species using histochemical or X-ray based techniques. Results showed that in Rosids, the largest clade of eudicots, Fe reserves were primarily confined to the embryo of the seeds. Furthermore, inside the embryos, Fe accumulated specifically in the endodermal cell layer, a well-known feature that is mediated by VACUOLAR IRON TRANSPORTER1 (VIT1) in model plant Arabidopsis thaliana. In rice, Fe enrichment is lost around the provasculature in the mutants of VIT1 orthologs. Finally, in Carica papaya, Fe accumulated in numerous organelles resembling plastids; however, these organelles accumulated reserve proteins but not ferritin, failing to prove to be plastids. By investigating Fe distribution in distinct plant lineages, this study failed to discover distinct Fe storage patterns that can be useful for biofortification. However, it revealed Fe enrichment is widely conserved in the endodermal cell layer in a VIT1-dependent manner in the plant kingdom

    Optical mapping of the Fusarium oxysporum f. sp. melongenae genome

    No full text
    Optical mapping approaches are widely preferred and applied in different branches of genomic studies because of their accuracy, low cost, and high efficiency. In the current study, a sequence orientation of the Fusarium oxysporum f. sp. melongenae (FOMG) genome that is deposited in GenBank National Center for Biotechnology Information under accession number MPIL00000000 was used as the reference genome, which we checked with Bionano Genomics optical mapping approaches. The optical mapping produced 103 contigs, the longest of which was 3.05 Mb. The N50 value of optical map contigs is 0.85 Mb. The sequences of the FOMG reference genome and optical map mainly match each other. Results obtained in the current study indicate that optical mapping can be used to construct complete and gapless assemblies of the FOMG genome. It also can be applied to validate a previous genome assembly

    Complete chloroplast genome of Lens lamottei reveals intraspecies variation among with Lens culinaris

    No full text
    Abstract Lens lamottei is a member of the Fabaceae family and the second gene pool of the genus Lens. The environmental factors that drove the divergence among wild and cultivated species have been studied extensively. Recent research has focused on genomic signatures associated with various phenotypes with the acceleration of next-generation techniques in molecular profiling. Therefore, in this study, we provide the complete sequence of the chloroplast genome sequence in the wild Lens species L. lamottei with a deep coverage of 713 × next-generation sequencing (NGS) data for the first time. Compared to the cultivated species, Lens culinaris, we identified synonymous, and nonsynonymous changes in the protein-coding regions of the genes ndhB, ndhF, ndhH, petA, rpoA, rpoC2, rps3, and ycf2 in L. lamottei. Phylogenetic analysis of chloroplast genomes of various plants under Leguminosae revealed that L. lamottei and L. culinaris are closest to one another than to other species. The complete chloroplast genome of L. lamottei also allowed us to reanalyze previously published transcriptomic data, which showed high levels of gene expression for ATP-synthase, rubisco, and photosystem genes. Overall, this study provides a deeper insight into the diversity of Lens species and the agricultural importance of these plants through their chloroplast genomes

    The complete chloroplast genome of Cicer reticulatum and comparative analysis against relative Cicer species

    No full text
    Abstract The chloroplast (cp) genome is an adequate genomic resource to investigate evolutionary relationships among plant species and it carries marker genes available for species identification. The Cicer reticulatum is one of perennial species as the progenitor of cultivated chickpeas. Although a large part of the land plants has a quadruple chloroplast genome organization, the cp genome of C. reticulatum consists of one LSC (Large Single Copy Region), one SSC (Small Single Copy Region), and one IR (Inverted Repeat) region, which indicates that it has an untypical and unique structure. This type of chloroplast genome belongs to the IR-lacking clade. Chloroplast DNA (cpDNA) was extracted from fresh leaves using a high salt-based protocol and sequencing was performed using DNA Nanoball Sequencing technology. The comparative analysis employed between the species to examine genomic differences and gene homology. The study also included codon usage frequency analysis, hotspot divergence analysis, and phylogenetic analysis using various bioinformatics tools. The cp genome of C. reticulatum was found 125,794 bp in length, with an overall GC content of 33.9%. With a total of 79 protein-coding genes, 34 tRNA genes, and 4 rRNA genes. Comparative genomic analysis revealed 99.93% similarity between C. reticulatum and C. arietinum. Phylogenetic analysis further indicated that the closest evolutionary relative to C. arietinum was C. reticulatum, whereas the previously sequenced wild Cicer species displayed slight distinctions across their entire coding regions. Several genomic regions, such as clpP and ycf1, were found to exhibit high nucleotide diversity, suggesting their potential utility as markers for investigating the evolutionary relationships within the Cicer genus. The first complete cp genome sequence of C. reticulatum will provide novel insights for future genetic research on Cicer crops
    corecore