1,379 research outputs found

    Mott transition in one-dimensional boson-fermion mixtures

    Full text link
    We numerically investigated Mott transitions and mixing-demixing transitions in one-dimensional boson-fermion mixtures at a commensurate filling. The mixing-demixing transition occurred in a qualitatively similar manner to the incommensurate filling case. We also found the Mott insulator phase appeared in both the mixing and the demixing states as the fermion-boson interaction or the boson-boson interaction increased. Phase diagrams were obtained in the interaction parameter space

    A model for the infrared dust emission from forming galaxies

    Get PDF
    In the early epoch of galaxy evolution, dust is only supplied by supernovae (SNe). With the aid of a new physical model of dust production by SNe developed by Nozawa et al. (2003) (N03), we constructed a model of dust emission from forming galaxies on the basis of the theoretical framework of Takeuchi et al. (2003) (T03). N03 showed that the produced dust species depends strongly on the mixing within SNe. We treated both unmixed and mixed cases and calculated the infrared (IR) spectral energy distribution (SED) of forming galaxies for both cases. Our model SED is less luminous than the SED of T03 model by a factor of 2-3. The difference is due to our improved treatment of UV photon absorption cross section, as well as different grain size and species newly adopted in this work. The SED for the unmixed case is found to have an enhanced near to mid-IR (N-MIR) continuum radiation in its early phase of the evolution (age < 10^{7.25} yr) compared with that for the mixed case. The strong N--MIR continuum is due to the emission from Si grains, which only exist in the species of the unmixed dust production. We also calculated the IR extinction curves for forming galaxies. Then we calculated the SED of a local starbursting dwarf galaxy SBS 0335-052. Our present model SED naturally reproduced the strong N--MIR continuum and the lack of cold FIR emission of SBS 0335-052. We found that only the SED of unmixed case can reproduce the NIR continuum of this galaxy. We then made a prediction for the SED of another typical star-forming dwarf, I Zw 18. We also presented the evolution of the SED of LBGs. Finally, we discussed the possibility of observing forming galaxies at z > 5.Comment: MNRAS, in press. 18 pages, 15 figures. Abstract abridge
    corecore