341 research outputs found

    Rock magnetism of tiny exsolved magnetite in plagioclase from a Paleoarchean granitoid in the Pilbara craton

    Get PDF
    金沢大学理工研究域地球社会基盤学系Granitoids are widespread in Precambrian terranes as well as the Phanerozoic orogenic belts, but they have garnered little attention in paleomagnetic studies, because granitoids often contain abundant coarse-grained, magnetically unstable oxides. In this study, the first example of tiny, needle-shaped, exsolved oxides in plagioclase in a Paleoarchean granitoid is reported. The magnetic properties of single plagioclase crystals with the exsolved oxide inclusions have been studied to determine their paleomagnetic recording fidelity. Demagnetization experiments and hysteresis parameters indicate that the oxide inclusions are near stoichiometric magnetite and magnetically very stable. First-order reversal curve (FORC) diagrams reveal negligible magnetostatic interactions. Minimal interactions are also reflected by very efficient acquisition of anhysteretic remanent magnetization. Single plagioclase crystals exhibit strong magnetic remanence anisotropies, which require corrections to their paleodirectional and paleointensity data. Nonetheless, quantitative consideration of anisotropy tensors of the single plagioclase crystals indicates that the bias can be mitigated by properly averaging data from a few tens of single crystals. From the nonlinear thermoremanence acquisition of the plagioclase crystals, we estimate that the plagioclase crystals can reconstruct paleointensity up to 50 μT. Local metamorphic condition suggests that those magnetite may carry remanence of ∼3.2 to 3.3 Ga. We suggest that exsolved magnetite in granitoids is potentially a suitable target for the study of the early history of the geomagnetic field, and prompt detailed microscopic investigations as well as paleomagnetic tests to constrain the age of remanence. © 2014. American Geophysical Union. All Rights Reserved

    A Fly-Through Mission Strategy Targeting Peptide as a Signature of Chemical Evolution and Possible Life in Enceladus Plumes

    Get PDF
    In situ detection of organic molecules in the extraterrestrial environment provides a key step towards better understanding the variety and the distribution of building blocks of life and it may ultimately lead to finding extraterrestrial life within the Solar System. Here we present combined results of two separate experiments that enable us to realize such in situ life signature detection from the deep habitats of the "Ocean World": a hydrothermal reactor experiment simulating complex organic synthesis and a simulated fly-through capture experiment of organic-bearing microparticles using silica aerogels, followed by subsequent analysis. Both experiments employ peptide as a plausible organics existing in Encleadus plume particles produced in its subsurface ocean. Recent laboratory hydrothermal experiments and a theoretical model on silica saturation indicated an on going hydrothermal reactions in subsurface Enceladus ocean. Given the porous chondritic origin of the core, it is likely that organic compounds originated by radiation chemistry such as amino acid precursors could have been provided, leached, and altered through widespread water-rock interactions. By using the same laboratory experimental setup from the latest water-rock interaction study, we performed amino acid polymerization experiments for 144 days and monitored the organic complexity changing over time. So far over 3,000 peaks up to the size of greater than 600 MW were observed through the analysis of capillary electrophoresis time-of-flight mass spectrometry (CE-TOF-MS) with an indication of amino acid derivatives and short peptides. Generally abiotic polymerization of enantiomeric amino acids results in forming stereoisomeric peptides with identical molecular weight and formula as opposed to homochiral biopolymers. Assuming Enceladus plume particles may contain a mixture of stereoisomeric peptides, we were able to distinguish 16 of the 17 stereoisomeric tripeptides as a test sample using capillary electrophoresis (CE) under optimized conditions. We further conducted Enceladus plume fly-through capture experiment by accelerating peptides soaked in rock particles up to a speed of 5.7 km/s and capturing with originally developed hydrophobic silica aerogels. Direct peptide extraction with acetonitrile-water followed by CE analysis led to detection of only but two stereoisomeric acidic peptide peaks, presenting the first run-through hypervelocuty impact sample analysis targeting peptides as key molecule to to understand the ongoing astrobiology on Enceladus

    Identification of paleomagnetic remanence carriers in ca. 3.47 Ga dacite from the Duffer Formation, the Pilbara Craton

    Get PDF
    金沢大学理工研究域地球社会基盤学系The ca. 3.47 Ga Duffer Formation has been considered to carry one of the oldest paleomagnetic records. Yet, the lack of rock magnetic data limits the interpretation of the nature of the remanence. We conducted a rock magnetic and paleomagnetic investigation on columnar dacite of the Duffer Formation. The main magnetic minerals are phenocrysts of titanomagnetite and magnetite, and secondary hematite in groundmass. Detailed thermal demagnetization revealed more complex natural remanence than previously estimated, consisting of four components with typical unblocking temperature of 200–350, 200–500, 590, and 690 °C. Combined with alternating field demagnetization and rock magnetic data, they are attributed to titanomagnetite, coarse-grained magnetite, fine-grained magnetite, and hematite, respectively. The comparison of unblocking temperature and coercivity suggests that the previously proposed secondary component is carried by fine-grained magnetite as well as hematite, while the putative primary component is carried by coarse-grained magnetite and titanomagnetite. Microscopic observations showed that coarse-grained magnetite and titanomagnetite are primary crystals, although this does not necessarily indicate they preserve primary remanence. The remanence directions of all components revealed higher scatter than the previous studies, suggesting the need for caution in interpretation. The low unblocking temperature of titanomagnetite suggests that if their remanence is truly primary, the rocks must have kept below ~ 250 °C for ~3.47 billion years. © 2020 Elsevier B.V.Embargo Period 24 month

    Discovery of New Hydrothermal Activity and Chemosynthetic Fauna on the Central Indian Ridge at 18°–20°S

    Get PDF
    Indian Ocean hydrothermal vents are believed to represent a novel biogeographic province, and are host to many novel genera and families of animals, potentially indigenous to Indian Ocean hydrothermal systems. In particular, since its discovery in 2001, much attention has been paid to a so-called ‘scaly-foot’ gastropod because of its unique iron-sulfide-coated dermal sclerites and the chemosynthetic symbioses in its various tissues. Despite increasing interest in the faunal assemblages at Indian Ocean hydrothermal vents, only two hydrothermal vent fields have been investigated in the Indian Ocean. Here we report two newly discovered hydrothermal vent fields, the Dodo and Solitaire fields, which are located in the Central Indian Ridge (CIR) segments 16 and 15, respectively. Chemosynthetic faunal communities at the Dodo field are emaciated in size and composition. In contrast, at the Solitaire field, we observed faunal communities that potentially contained almost all genera found at CIR hydrothermal environments to date, and even identified previously unreported taxa. Moreover, a new morphotype of ‘scaly-foot’ gastropod has been found at the Solitaire field. The newly discovered ‘scaly-foot’ gastropod has similar morphological and anatomical features to the previously reported type that inhabits the Kairei field, and both types of ‘scaly-foot’ gastropods genetically belong to the same species according to analyses of their COI gene and nuclear SSU rRNA gene sequences. However, the new morphotype completely lacks an iron-sulfide coating on the sclerites, which had been believed to be a novel feature restricted to ‘scaly-foot’ gastropods. Our new findings at the two newly discovered hydrothermal vent sites provide important insights into the biodiversity and biogeography of vent-endemic ecosystems in the Indian Ocean

    Experimental and Simulation Efforts in the Astrobiological Exploration of Exooceans

    Get PDF
    The icy satellites of Jupiter and Saturn are perhaps the most promising places in the Solar System regarding habitability. However, the potential habitable environments are hidden underneath km-thick ice shells. The discovery of Enceladus’ plume by the Cassini mission has provided vital clues in our understanding of the processes occurring within the interior of exooceans. To interpret these data and to help configure instruments for future missions, controlled laboratory experiments and simulations are needed. This review aims to bring together studies and experimental designs from various scientific fields currently investigating the icy moons, including planetary sciences, chemistry, (micro-)biology, geology, glaciology, etc. This chapter provides an overview of successful in situ, in silico, and in vitro experiments, which explore different regions of interest on icy moons, i.e. a potential plume, surface, icy shell, water and brines, hydrothermal vents, and the rocky core
    corecore