21 research outputs found

    Male Γ— Female Interaction for a Pre-Copulatory Trait, but Not a Post-Copulatory Trait, among Cosmopolitan Populations of Drosophila melanogaster

    Get PDF
    Sexual coevolution occurs when changes in the phenotype of one sex select for changes in the other sex. We can identify the β€œfootprint” of this coevolution by mating males and females from different populations and testing for a male-female genotype interaction for a trait associated with male (or female) performance. Here we mated male Drosophila melanogaster from five different continents with females from their own and different continents to test for a male-female interaction for mating speed, a pre-copulatory trait, and female reproductive investment, a post-copulatory trait. We found a strong male-female interaction for mating speed, consistent with previous studies using different populations, suggesting that the potential for sexual coevolution for this trait is present in this species. In contrast, we did not detect a male-female interaction for female reproductive investment. Although a male-female interaction for mating speed is compatible with the hypothesis of ongoing sexual coevolution, the nature of our experimental design is unable to exclude alternate explanations. Thus, the evolutionary mechanisms promoting male-female genotype interactions for pre-copulatory mating traits in D. melanogaster warrant further investigation

    Degree of adaptive male mate choice is positively correlated with female quality variance

    Get PDF
    When the cost of reproduction for males and variance in female quality are high, males are predicted to show adaptive mate choice. Using Drosophila melanogaster, we test this prediction and show that sperm limited males preferentially mated with young and/or well fed females. The preferred females had higher reproductive output – direct evidence of adaptive precopulatory male mate choice. Our most striking finding is the strong positive correlation between the degree of mating bias showed by the males and the variance in the fitness of the females. We discuss the possible mechanism for such adaptive male mate choice and propose that such choice has important consequences with respect to the existing understanding of the mating system and the evolution of aging

    Population-Based Resequencing of Experimentally Evolved Populations Reveals the Genetic Basis of Body Size Variation in Drosophila melanogaster

    Get PDF
    Body size is a classic quantitative trait with evolutionarily significant variation within many species. Locating the alleles responsible for this variation would help understand the maintenance of variation in body size in particular, as well as quantitative traits in general. However, successful genome-wide association of genotype and phenotype may require very large sample sizes if alleles have low population frequencies or modest effects. As a complementary approach, we propose that population-based resequencing of experimentally evolved populations allows for considerable power to map functional variation. Here, we use this technique to investigate the genetic basis of natural variation in body size in Drosophila melanogaster. Significant differentiation of hundreds of loci in replicate selection populations supports the hypothesis that the genetic basis of body size variation is very polygenic in D. melanogaster. Significantly differentiated variants are limited to single genes at some loci, allowing precise hypotheses to be formed regarding causal polymorphisms, while other significant regions are large and contain many genes. By using significantly associated polymorphisms as a priori candidates in follow-up studies, these data are expected to provide considerable power to determine the genetic basis of natural variation in body size

    Reproductive Behaviour Evolves Rapidly When Intralocus Sexual Conflict Is Removed

    Get PDF
    Background Intralocus sexual conflict can inhibit the evolution of each sex towards its own fitness optimum. In a previous study, we confirmed this prediction through the experimental removal of female selection pressures in Drosophila melanogaster, achieved by limiting the expression of all major chromosomes to males. Compared to the control populations (C1-4) where the genomes are exposed to selection in both sexes, the populations with male-limited genomes (ML1-4) showed rapid increases in male fitness, whereas the fitness of females expressing ML-evolved chromosomes decreased [1]. Methodology/Principal Findings Here we examine the behavioural phenotype underlying this sexual antagonism. We show that males expressing the ML genomes have a reduced courtship level but acquire the same number of matings. On the other hand, our data suggest that females expressing the ML genomes had reduced attractiveness, stimulating a lower rate of courtship from males. Moreover, females expressing ML genomes tend to display reduced yeast-feeding behaviour, which is probably linked to the reduction of their fecundity. Conclusion/Significance These results suggest that reproductive behaviour is shaped by opposing selection on males and females, and that loci influencing attractiveness and foraging were polymorphic for alleles with sexually antagonistic expression patterns prior to ML selection. Hence, intralocus sexual conflict appears to play a role in the evolution of a wide range of fitness-related traits and may be a powerful mechanism for the maintenance of genetic variation in fitness

    Sexual Conflict and Sexually Antagonistic Coevolution in an Annual Plant

    Get PDF
    BACKGROUND: Sexual conflict theory predicts sexually antagonistic coevolution of reproductive traits driven by conflicting evolutionary interests of two reproducing individuals. Most studies of the evolutionary consequences of sexual conflicts have, however, to date collectively investigated only a few species. In this study we used the annual herb Collinsia heterophylla to experimentally test the existence and evolutionary consequences of a potential sexual conflict over onset of stigma receptivity. METHODOLOGY/PRINCIPAL FINDINGS: We conducted crosses within and between four greenhouse-grown populations originating from two regions. Our experimental setup allowed us to investigate male-female interactions at three levels of geographic distances between interacting individuals. Both recipient and pollen donor identity affected onset of stigma receptivity within populations, confirming previous results that some pollen donors can induce stigma receptivity. We also found that donors were generally better at inducing stigma receptivity following pollen deposition on stigmas of recipients from another population than their own, especially within a region. On the other hand, we found that donors did worse at inducing stigma receptivity in crosses between regions. Interestingly, recipient costs in terms of lowered seed number after early fertilisation followed the same pattern: the cost was apparent only if the pollen donor belonged to the same region as the recipient. CONCLUSION/SIGNIFICANCE: Our results indicate that recipients are released from the cost of interacting with local pollen donors when crossed with donors from a more distant location, a pattern consistent with a history of sexually antagonistic coevolution within populations. Accordingly, sexual conflicts may have important evolutionary consequences also in plants

    ZENK activation in the nidopallium of black-capped chickadees in response to both conspecific and heterospecific calls

    Get PDF
    Neuronal populations in the songbird nidopallium increase in activity the most to conspecific vocalizations relative to heterospecific songbird vocalizations or artificial stimuli such as tones. Here, we tested whether the difference in neural activity between conspecific and heterospecific vocalizations is due to acoustic differences or to the degree of phylogenetic relatedness of the species producing the vocalizations. To compare differences in neural responses of black-capped chickadees, Poecile atricapillus, to playback conditions we used a known marker for neural activity, ZENK, in the caudal medial nidopallium and caudomedial mesopallium. We used the acoustically complex β€˜dee’ notes from chick-a-dee calls, and vocalizations from other heterospecific species similar in duration and spectral features. We tested the vocalizations from three heterospecific species (chestnut-backed chickadees, tufted titmice, and zebra finches), the vocalizations from conspecific individuals (black-capped chickadees), and reversed versions of the latter. There were no significant differences in the amount of expression between any of the groups except in the control condition, which resulted in significantly less neuronal activation. Our results suggest that, in certain cases, neuronal activity is not higher in response to conspecific than in response to heterospecific vocalizations for songbirds, but rather is sensitive to the acoustic features of the signal. Both acoustic features of the calls and the phylogenetic relationship between of the signaler and the receiver interact in the response of the nidopallium.Publisher PDFPeer reviewe

    Variation in male mate choice in Drosophila melanogaster

    Get PDF
    Male mate choice has been reported in the fruit fly, Drosophila melanogaster, even though males of this species were previously thought to maximise their fitness by mating with all available females. To understand the evolution of male mate choice it is important to understand variation in male mating preferences. Two studies, using different stock populations and different methods, have reported contrasting patterns of variation in male mate choice in D. melanogaster. Two possible explanations are that there are evolved differences in each stock population or that the methods used to measure choice could have biased the results. We investigated these hypotheses here by repeating the methods used in one study in which variable male mate choice was found, using the stock population from the other study in which choice was not variable. The results showed a significant resource-independent male preference for less fecund, smaller females, which contrasts with previous observations of male mate choice. This indicates that different selection pressures between populations have resulted in evolved differences in the expression of male mate choice. It also reveals phenotypic plasticity in male mate choice in response to cues encountered in each choice environment. The results highlight the importance of variation in male mate choice, and of identifying mechanisms in order to understand the evolution of mate choice under varying ecological conditions
    corecore