2,406 research outputs found

    Intrinsic electric field effects on few-particle interactions in coupled GaN quantum dots

    Get PDF
    We study the multi-exciton optical spectrum of vertically coupled GaN/AlN quantum dots with a realistic three-dimensional direct-diagonalization approach for the description of few-particle Coulomb-correlated states. We present a detailed analysis of the fundamental properties of few-particle/exciton interactions peculiar of nitride materials. The giant intrinsic electric fields and the high electron/hole effective masses give rise to different effects compared to GaAs-based quantum dots: intrinsic exciton-exciton coupling, non-molecular character of coupled dot exciton wavefunction, strong dependence of the oscillator strength on the dot height, large ground state energy shift for dots separated by different barriers. Some of these effects make GaN/AlN quantum dots interesting candidates in quantum information processing.Comment: 23 pages, 8 figures, 1 tabl

    Dicarboxylic acids, ketocarboxylic acids, Ī±-dicarbonyls, fatty acids and benzoic acid in PM2.5 aerosol collected during CAREBeijing-2007: an effect of traffic restriction on air quality

    Get PDF
    Thirty water-soluble organic species, including dicarboxylic acids, ketocarboxylic acids, Ī±-dicarbonyls, fatty acids and benzoic acid were determined as well as organic carbon (OC), elemental carbon (EC) and water-soluble organic carbon (WSOC) in PM2.5 samples collected during the Campaign of Air Quality Research in Beijing 2007 (CAREBeijing-2007) in the urban and suburban areas of Beijing. The objective of this study is to identify the influence of traffic emissions and regional transport to the atmosphere in Beijing during summer. PM2.5 samples collected with or without traffic restriction in Beijing are selected to evaluate the effectiveness of local traffic restriction measures on air pollution reduction. The average concentrations of the total quantified bifunctional organic compounds (TQBOCs), total fatty acids and benzoic acid during the entire sampling period were 1184Ā±241, 597Ā±159 and 1496Ā±511 ng māˆ’3 in Peking University (PKU), and 1050Ā±303, 475Ā±114 and 1278Ā±372 ng māˆ’3 in Yufa, Beijing. Oxalic acid (C2) was found as the most abundant dicarboxylic acid at PKU and Yufa followed by phthalic acid (Ph). A strong even carbon number predominance with the highest level at stearic acid (C18:0), followed by palmitic acid (C16:0) was found for fatty acids. According to the back trajectories modeling results, the air masses were found to originate mainly from the northeast, passing over the southeast or south of Beijing (heavily populated, urbanized and industrialized areas), during heavier pollution events, whereas they are mainly from the north or northwest sector (mountain areas without serious anthropogenic pollution sources) during less pollution events. The data with wind only from the same sector (minimizing the difference from regional contribution) but with and without traffic restriction in Beijing were analyzed to evaluate the effectiveness of local traffic restriction measures on the reduction of local air pollution in Beijing. The results suggested that the traffic restriction measures can reduce the air pollutants, but the decrease of pollutants is generally smaller in Yufa compared to that in PKU. Moreover, an enhancement of EC value indicates more elevated primary emissions in Yufa during restriction periods than in non-restriction periods. This study demonstrates that even when primary exhaust was controlled by traffic restriction, the contribution of secondary organic species formed from photochemical processes was critical with long-range atmospheric transport of pollutants.published_or_final_versio

    Conformal Yano-Killing tensor for the Kerr metric and conserved quantities

    Full text link
    Properties of (skew-symmetric) conformal Yano--Killing tensors are reviewed. Explicit forms of three symmetric conformal Killing tensors in Kerr spacetime are obtained from the Yano--Killing tensor. The relation between spin-2 fields and solutions to the Maxwell equations is used in the construction of a new conserved quantity which is quadratic in terms of the Weyl tensor. The formula obtained is similar to the functional obtained from the Bel--Robinson tensor and is examined in Kerr spacetime. A new interpretation of the conserved quantity obtained is proposed.Comment: 29 page

    The origin of short-lived radionuclides and the astrophysical environment of solar system formation

    Full text link
    Based on early solar system abundances of short-lived radionuclides (SRs), such as 26^{26}Al (T1/2=0.74_{1/2} = 0.74 Myr) and 60^{60}Fe (T1/2=1.5_{1/2} = 1.5 Myr), it is often asserted that the Sun was born in a large stellar cluster, where a massive star contaminated the protoplanetary disk with freshly nucleosynthesized isotopes from its supernova (SN) explosion. To account for the inferred initial solar system abundances of short-lived radionuclides, this supernova had to be close (āˆ¼\sim 0.3 pc) to the young (ā©½\leqslant 1 Myr) protoplanetary disk. Here we show that massive star evolution timescales are too long, compared to typical timescales of star formation in embedded clusters, for them to explode as supernovae within the lifetimes of nearby disks. This is especially true in an Orion Nebular Cluster (ONC)-type of setting, where the most massive star will explode as a supernova āˆ¼\sim 5 Myr after the onset of star formation, when nearby disks will have already suffered substantial photoevaporation and/or formed large planetesimals. We quantify the probability for {\it any} protoplanetary disk to receive SRs from a nearby supernova at the level observed in the early solar system. Key constraints on our estimate are: (1) SRs have to be injected into a newly formed (ā©½\leqslant 1 Myr) disk, (2) the disk has to survive UV photoevaporation, and (3) the protoplanetary disk must be situated in an enrichment zone permitting SR injection at the solar system level without disk disruption. The probability of protoplanetary disk contamination by a supernova ejecta is, in the most favorable case, 3 Ɨ\times 10āˆ’3^{-3}

    The axial anomaly and the phases of dense QCD

    Full text link
    The QCD axial anomaly, by coupling the chiral condensate and BCS pairing fields of quarks in dense matter, leads to a new critical point in the QCD phase diagram \cite{HTYB,chiral2}, which at sufficiently low temperature should terminate the line of phase transitions between chirally broken hadronic matter and color superconducting quark matter. The critical point indicates that matter at low temperature should cross over smoothly from the hadronic to the quark phase, as suggested earlier on the basis of symmetry. We review here the arguments, based on a general Ginzburg-Landau effective Lagrangian, for the existence of the new critical point, as well as discuss possible connections between the QCD phase structure and the BEC-BCS crossover in ultracold trapped atomic fermion systems at unitarity. and implications for the presence of quark matter in neutron stars.Comment: 8 pages, Proceedings of Quark Matter 2008, Jaipu
    • ā€¦
    corecore