135 research outputs found

    Revisiting the Hetero-Fertilization Phenomenon in Maize

    Get PDF
    Development of a seed DNA-based genotyping system for marker-assisted selection (MAS) has provided a novel opportunity for understanding aberrant reproductive phenomena such as hetero-fertilization (HF) by observing the mismatch of endosperm and leaf genotypes in monocot species. In contrast to conventional approaches using specific morphological markers, this approach can be used for any population derived from diverse parental genotypes. A large-scale experiment was implemented using seven F2 populations and four three-way cross populations, each with 534 to 1024 individuals. The frequency of HF within these populations ranged from 0.14% to 3.12%, with an average of 1.46%. The highest frequency of HF in both types of population was contributed by the pollen gametes. Using three-way crosses allowed, for the first time, detection of the HF contributed by maternal gametes, albeit at very low frequency (0.14%–0.65%). Four HF events identified from each of two F2 populations were tested and confirmed using 1032 single nucleotide polymorphic markers. This analysis indicated that only 50% of polymorphic markers can detect a known HF event, and thus the real HF frequency can be inferred by doubling the estimate obtained from using only one polymorphic marker. As expected, 99% of the HF events can be detected by using seven independent markers in combination. Although seed DNA-based analysis may wrongly predict plant genotypes due to the mismatch of endosperm and leaf DNA caused by HF, the relatively low HF frequencies revealed with diverse germplasm in this study indicates that the effect on the accuracy of MAS is limited. In addition, comparative endosperm and leaf DNA analysis of specific genetic stocks could be useful for revealing the relationships among various aberrant fertilization phenomena including haploidy and apomixis

    WD40 Domain Divergence Is Important for Functional Differences between the Fission Yeast Tup11 and Tup12 Co-Repressor Proteins

    Get PDF
    We have previously demonstrated that subsets of Ssn6/Tup target genes have distinct requirements for the Schizosaccharomyces pombe homologs of the Tup1/Groucho/TLE co-repressor proteins, Tup11 and Tup12. The very high level of divergence in the histone interacting repression domains of the two proteins suggested that determinants distinguishing Tup11 and Tup12 might be located in this domain. Here we have combined phylogenetic and structural analysis as well as phenotypic characterization, under stress conditions that specifically require Tup12, to identify and characterize the domains involved in Tup12-specific action. The results indicate that divergence in the repression domain is not generally relevant for Tup12-specific function. Instead, we show that the more highly conserved C-terminal WD40 repeat domain of Tup12 is important for Tup12-specific function. Surface amino acid residues specific for the WD40 repeat domain of Tup12 proteins in different fission yeasts are clustered in blade 3 of the propeller-like structure that is characteristic of WD40 repeat domains. The Tup11 and Tup12 proteins in fission yeasts thus provide an excellent model system for studying the functional divergence of WD40 repeat domains

    Self-reported use of complementary and alternative medicine (CAM) products in topical treatment of diabetic foot disorders by diabetic patients in Jeddah, Western Saudi Arabia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is little published on current Saudi diabetic patients' practices when they are exposed to foot disorders such as open wound, ulcer, and skin cracks. These factors are usually influenced by local culture and communities beliefs. The aim of the current study was to identify the pattern of patients' use of CAM products in dealing with diabetic foot disorders topically in a group of diabetic patients.</p> <p>Findings</p> <p>A Cross-sectional descriptive study of a representative cohort of diabetic patients living in Jeddah, Saudi Arabia was designed. A pre-designed questionnaire to identify local diabetics' practices in dealing topically with foot disorders including open wound, chronic ulcer, and skin cracks was designed. Questionnaire was administered by a group of trained nutrition female students to diabetics face to face living in their neighborhood. A total of 1634 Saudi diabetics were interviewed. Foot disorders occurred in approximately two thirds of the respondents 1006 (61.6%). Out of the 1006 patients who had foot disorders, 653 reported trying some sort of treatment as 307 patients (47.1%) used conventional topical medical treatment alone, 142 (21.7%) used CAM products alone, and 204 (31.2%) used both treatments. The most commonly used CAM product by the patients was Honey (56.6%) followed by Commiphora Molmol (Myrrh) in (37.4%) and Nigellia Sativa (Black seed) in (35.1%). The least to be used was Lawsonia inermis (Henna) in (12.1%). Ten common natural preparations used topically to treat diabetic foot disorders were also identified.</p> <p>Conclusions</p> <p>The use of CAM products in topical treatment of diabetic foot disorders is fairly common among Saudi diabetic patients. Honey headed the list as a solo topical preparation or in combination with other herbs namely black seeds and myrrh. The efficacy of the most common products needs further research.</p

    Regulation of Signaling at Regions of Cell-Cell Contact by Endoplasmic Reticulum-Bound Protein-Tyrosine Phosphatase 1B

    Get PDF
    Protein-tyrosine phosphatase 1B (PTP1B) is a ubiquitously expressed PTP that is anchored to the endoplasmic reticulum (ER). PTP1B dephosphorylates activated receptor tyrosine kinases after endocytosis, as they transit past the ER. However, PTP1B also can access some plasma membrane (PM)-bound substrates at points of cell-cell contact. To explore how PTP1B interacts with such substrates, we utilized quantitative cellular imaging approaches and mathematical modeling of protein mobility. We find that the ER network comes in close proximity to the PM at apparently specialized regions of cell-cell contact, enabling PTP1B to engage substrate(s) at these sites. Studies using PTP1B mutants show that the ER anchor plays an important role in restricting its interactions with PM substrates mainly to regions of cell-cell contact. In addition, treatment with PTP1B inhibitor leads to increased tyrosine phosphorylation of EphA2, a PTP1B substrate, specifically at regions of cell-cell contact. Collectively, our results identify PM-proximal sub-regions of the ER as important sites of cellular signaling regulation by PTP1B

    Optimization of Cell Morphology Measurement via Single-Molecule Tracking PALM

    Get PDF
    In neurons, the shape of dendritic spines relates to synapse function, which is rapidly altered during experience-dependent neural plasticity. The small size of spines makes detailed measurement of their morphology in living cells best suited to super-resolution imaging techniques. The distribution of molecular positions mapped via live-cell Photoactivated Localization Microscopy (PALM) is a powerful approach, but molecular motion complicates this analysis and can degrade overall resolution of the morphological reconstruction. Nevertheless, the motion is of additional interest because tracking single molecules provides diffusion coefficients, bound fraction, and other key functional parameters. We used Monte Carlo simulations to examine features of single-molecule tracking of practical utility for the simultaneous determination of cell morphology. We find that the accuracy of determining both distance and angle of motion depend heavily on the precision with which molecules are localized. Strikingly, diffusion within a bounded region resulted in an inward bias of localizations away from the edges, inaccurately reflecting the region structure. This inward bias additionally resulted in a counterintuitive reduction of measured diffusion coefficient for fast-moving molecules; this effect was accentuated by the long camera exposures typically used in single-molecule tracking. Thus, accurate determination of cell morphology from rapidly moving molecules requires the use of short integration times within each image to minimize artifacts caused by motion during image acquisition. Sequential imaging of neuronal processes using excitation pulses of either 2 ms or 10 ms within imaging frames confirmed this: processes appeared erroneously thinner when imaged using the longer excitation pulse. Using this pulsed excitation approach, we show that PALM can be used to image spine and spine neck morphology in living neurons. These results clarify a number of issues involved in interpretation of single-molecule data in living cells and provide a method to minimize artifacts in single-molecule experiments

    Integration of a nationally procured electronic health record system into user work practices

    Get PDF
    BACKGROUND: Evidence suggests that many small- and medium-scale Electronic Health Record (EHR) implementations encounter problems, these often stemming from users' difficulties in accommodating the new technology into their work practices. There is the possibility that these challenges may be exacerbated in the context of the larger-scale, more standardised, implementation strategies now being pursued as part of major national modernisation initiatives. We sought to understand how England's centrally procured and delivered EHR software was integrated within the work practices of users in selected secondary and specialist care settings. METHODS: We conducted a qualitative longitudinal case study-based investigation drawing on sociotechnical theory in three purposefully selected sites implementing early functionality of a nationally procured EHR system. The complete dataset comprised semi-structured interview data from a total of 66 different participants, 38.5 hours of non-participant observation of use of the software in context, accompanying researcher field notes, and hospital documents (including project initiation and lessons learnt reports). Transcribed data were analysed thematically using a combination of deductive and inductive approaches, and drawing on NVivo8 software to facilitate coding. RESULTS: The nationally led "top-down" implementation and the associated focus on interoperability limited the opportunity to customise software to local needs. Lack of system usability led users to employ a range of workarounds unanticipated by management to compensate for the perceived shortcomings of the system. These had a number of knock-on effects relating to the nature of collaborative work, patterns of communication, the timeliness and availability of records (including paper) and the ability for hospital management to monitor organisational performance. CONCLUSIONS: This work has highlighted the importance of addressing potentially adverse unintended consequences of workarounds associated with the introduction of EHRs. This can be achieved with customisation, which is inevitably somewhat restricted in the context of attempts to implement national solutions. The tensions and potential trade-offs between achieving large-scale interoperability and local requirements is likely to be the subject of continuous debate in England and beyond with no easy answers in sight

    Genesis of a Fungal Non-Self Recognition Repertoire

    Get PDF
    Conspecific allorecognition, the ability for an organism to discriminate its own cells from those of another individual of the same species, has been developed by many organisms. Allorecognition specificities are determined by highly polymorphic genes. The processes by which this extreme polymorphism is generated remain largely unknown. Fungi are able to form heterokaryons by fusion of somatic cells, and somatic non self-recognition is controlled by heterokaryon incompatibility loci (het loci). Herein, we have analyzed the evolutionary features of the het-d and het-e fungal allorecognition genes. In these het genes, allorecognition specificity is determined by a polymorphic WD-repeat domain. We found that het-d and het-e belong to a large gene family with 10 members that all share the WD-repeat domain and show that repeats of all members of the family undergo concerted evolution. It follows that repeat units are constantly exchanged both within and between members of the gene family. As a consequence, high mutation supply in the repeat domain is ensured due to the high total copy number of repeats. We then show that in each repeat four residues located at the protein/protein interaction surface of the WD-repeat domain are under positive diversifying selection. Diversification of het-d and het-e is thus ensured by high mutation supply, followed by reshuffling of the repeats and positive selection for favourable variants. We also propose that RIP, a fungal specific hypermutation process acting specifically on repeated sequences might further enhance mutation supply. The combination of these evolutionary mechanisms constitutes an original process for generating extensive polymorphism at loci that require rapid diversification

    Prediction of Promiscuous P-Glycoprotein Inhibition Using a Novel Machine Learning Scheme

    Get PDF
    BACKGROUND: P-glycoprotein (P-gp) is an ATP-dependent membrane transporter that plays a pivotal role in eliminating xenobiotics by active extrusion of xenobiotics from the cell. Multidrug resistance (MDR) is highly associated with the over-expression of P-gp by cells, resulting in increased efflux of chemotherapeutical agents and reduction of intracellular drug accumulation. It is of clinical importance to develop a P-gp inhibition predictive model in the process of drug discovery and development. METHODOLOGY/PRINCIPAL FINDINGS: An in silico model was derived to predict the inhibition of P-gp using the newly invented pharmacophore ensemble/support vector machine (PhE/SVM) scheme based on the data compiled from the literature. The predictions by the PhE/SVM model were found to be in good agreement with the observed values for those structurally diverse molecules in the training set (n = 31, r(2) = 0.89, q(2) = 0.86, RMSE = 0.40, s = 0.28), the test set (n = 88, r(2) = 0.87, RMSE = 0.39, s = 0.25) and the outlier set (n = 11, r(2) = 0.96, RMSE = 0.10, s = 0.05). The generated PhE/SVM model also showed high accuracy when subjected to those validation criteria generally adopted to gauge the predictivity of a theoretical model. CONCLUSIONS/SIGNIFICANCE: This accurate, fast and robust PhE/SVM model that can take into account the promiscuous nature of P-gp can be applied to predict the P-gp inhibition of structurally diverse compounds that otherwise cannot be done by any other methods in a high-throughput fashion to facilitate drug discovery and development by designing drug candidates with better metabolism profile
    corecore