13 research outputs found

    The steel–concrete interface

    Get PDF
    Although the steel–concrete interface (SCI) is widely recognized to influence the durability of reinforced concrete, a systematic overview and detailed documentation of the various aspects of the SCI are lacking. In this paper, we compiled a comprehensive list of possible local characteristics at the SCI and reviewed available information regarding their properties as well as their occurrence in engineering structures and in the laboratory. Given the complexity of the SCI, we suggested a systematic approach to describe it in terms of local characteristics and their physical and chemical properties. It was found that the SCI exhibits significant spatial inhomogeneity along and around as well as perpendicular to the reinforcing steel. The SCI can differ strongly between different engineering structures and also between different members within a structure; particular differences are expected between structures built before and after the 1970/1980s. A single SCI representing all on-site conditions does not exist. Additionally, SCIs in common laboratory-made specimens exhibit significant differences compared to engineering structures. Thus, results from laboratory studies and from practical experience should be applied to engineering structures with caution. Finally, recommendations for further research are made

    Engineering performance of a new siloxane-based corrosion inhibitor

    Get PDF
    This paper presents an evaluation of a new non-toxic corrosion inhibitor on selected engineering properties of concrete mixes with different cementitious materials following a corrosion and durability study on concrete samples. Corrosion inhibitors consist of powders or solutions which are added to concrete when mixed to prevent or delay corrosion of steel by their reaction with ferrous ions to form a stable and passive ferric oxide film on the steel surface. The new inhibitor functions slightly differently and its corrosion inhibition effect is due to the formation of a siloxane coating on the steel surface. Therefore, the performance of the new inhibitor in concrete mixes manufactured with CEM I, PFA and GGBS cements was compared against a well known and established corrosion inhibitor on the market, namely calcium nitrite in terms of their effect on workability (measured in terms of slump), compressive strength, freeze–thaw durability and macro-cell corrosion. The results from this experimental programme have demonstrated that the new inhibitor is effective in reducing or slowing down corrosion. In addition, it was found that CEM I concrete containing the new inhibitor was less penetrable to chlorides than that without. A similar set of results was obtained for the freeze–thaw resistance, but the compressive strength was found to decrease with the addition of the new inhibitor. In the case of concretes containing PFA and GGBS, the new inhibitor was found to be less effective. Further, long-term investigations are recommended to assess the effectiveness over time
    corecore