49 research outputs found

    Identification of Tsetse (Glossina spp.) using matrix-assisted laser desorption/ionisation time of flight mass spectrometry

    Get PDF
    Glossina (G.) spp. (Diptera: Glossinidae), known as tsetse flies, are vectors of African trypanosomes that cause sleeping sickness in humans and nagana in domestic livestock. Knowledge on tsetse distribution and accurate species identification help identify potential vector intervention sites. Morphological species identification of tsetse is challenging and sometimes not accurate. The matrix-assisted laser desorption/ionisation time of flight mass spectrometry (MALDI TOF MS) technique, already standardised for microbial identification, could become a standard method for tsetse fly diagnostics. Therefore, a unique spectra reference database was created for five lab-reared species of riverine-, savannah- and forest- type tsetse flies and incorporated with the commercial Biotyper 3.0 database. The standard formic acid/acetonitrile extraction of male and female whole insects and their body parts (head, thorax, abdomen, wings and legs) was used to obtain the flies' proteins. The computed composite correlation index and cluster analysis revealed the suitability of any tsetse body part for a rapid taxonomical identification. Phyloproteomic analysis revealed that the peak patterns of G. brevipalpis differed greatly from the other tsetse. This outcome was comparable to previous theories that they might be considered as a sister group to other tsetse spp. Freshly extracted samples were found to be matched at the species level. However, sex differentiation proved to be less reliable. Similarly processed samples of the common house fly Musca domestica (Diptera: Muscidae; strain: Lei) did not yield any match with the tsetse reference database. The inclusion of additional strains of morphologically defined wild caught flies of known origin and the availability of large-scale mass spectrometry data could facilitate rapid tsetse species identification in the futur

    Relevance of laboratory testing for the diagnosis of primary immunodeficiencies: a review of case-based examples of selected immunodeficiencies

    Get PDF
    The field of primary immunodeficiencies (PIDs) is one of several in the area of clinical immunology that has not been static, but rather has shown exponential growth due to enhanced physician, scientist and patient education and awareness, leading to identification of new diseases, new molecular diagnoses of existing clinical phenotypes, broadening of the spectrum of clinical and phenotypic presentations associated with a single or related gene defects, increased bioinformatics resources, and utilization of advanced diagnostic technology and methodology for disease diagnosis and management resulting in improved outcomes and survival. There are currently over 200 PIDs with at least 170 associated genetic defects identified, with several of these being reported in recent years. The enormous clinical and immunological heterogeneity in the PIDs makes diagnosis challenging, but there is no doubt that early and accurate diagnosis facilitates prompt intervention leading to decreased morbidity and mortality. Diagnosis of PIDs often requires correlation of data obtained from clinical and radiological findings with laboratory immunological analyses and genetic testing. The field of laboratory diagnostic immunology is also rapidly burgeoning, both in terms of novel technologies and applications, and knowledge of human immunology. Over the years, the classification of PIDs has been primarily based on the immunological defect(s) ("immunophenotype") with the relatively recent addition of genotype, though there are clinical classifications as well. There can be substantial overlap in terms of the broad immunophenotype and clinical features between PIDs, and therefore, it is relevant to refine, at a cellular and molecular level, unique immunological defects that allow for a specific and accurate diagnosis. The diagnostic testing armamentarium for PID includes flow cytometry - phenotyping and functional, cellular and molecular assays, protein analysis, and mutation identification by gene sequencing. The complexity and diversity of the laboratory diagnosis of PIDs necessitates many of the above-mentioned tests being performed in highly specialized reference laboratories. Despite these restrictions, there remains an urgent need for improved standardization and optimization of phenotypic and functional flow cytometry and protein-specific assays. A key component in the interpretation of immunological assays is the comparison of patient data to that obtained in a statistically-robust manner from age and gender-matched healthy donors. This review highlights a few of the laboratory assays available for the diagnostic work-up of broad categories of PIDs, based on immunophenotyping, followed by examples of disease-specific testing

    The emerging modern face of mood disorders: a didactic editorial with a detailed presentation of data and definitions

    Get PDF
    The present work represents a detailed description of our current understanding and knowledge of the epidemiology, etiopathogenesis and clinical manifestations of mood disorders, their comorbidity and overlap, and the effect of variables such as gender and age. This review article is largely based on the 'Mood disorders' chapter of the Wikibooks Textbook of Psychiatry http://en.wikibooks.org/wiki/Textbook_of_Psychiatry/Mood_Disorders

    Medicinal plants – prophylactic and therapeutic options for gastrointestinal and respiratory diseases in calves and piglets? A systematic review

    Full text link

    Adolescent perspectives on social support received in the aftermath of sexual abuse: a qualitative study

    Full text link
    The extent and quality of social support provided to young survivors of sexual abuse (SA) have only rarely been examined. This qualitative study aimed to investigate adolescent perspectives on social support received in the aftermath of SA. A total of 26 sexually victimized adolescents (15-18 years old) participated in a qualitative face-to-face, in-depth interview that focused on perceived social support. Qualitative content analysis was conducted as per Mayring (2008) using the qualitative data analysis program ATLAS.ti. In addition, quantitative correlational analyses were conducted to identify characteristics of SA and their associations with perceived social support. Although participants perceived parental support as the most necessary type of support, they were much more satisfied with support from peers. In particular, adolescents stated that they wished they had received more emotional support from their parents in order to better cope with the abuse. About half of participants reported having received counseling, and counseling was seen as very helpful in dealing with the consequences of SA. Only a few adolescents mentioned their school as a source of support. Intra-familial abuse, younger victim age at the time of abuse, an adult perpetrator, and severe abuse were all negatively associated with satisfaction with perceived support. Our results suggest that support for young survivors of SA needs to be improved. Prevention of SA needs particular focus on improving parental reactions to SA, facilitating access to professional support, and raising teacher awareness of the importance of their role in the provision of support for sexually victimized children
    corecore