32 research outputs found

    Assessing connectivity between an overlying aquifer and a coal seam gas resource using methane isotopes, dissolved organic carbon and tritium

    Get PDF
    Coal seam gas (CSG) production can have an impact on groundwater quality and quantity in adjacent or overlying aquifers. To assess this impact we need to determine the background groundwater chemistry and to map geological pathways of hydraulic connectivity between aquifers. In south-east Queensland (Qld), Australia, a globally important CSG exploration and production province, we mapped hydraulic connectivity between the Walloon Coal Measures (WCM, the target formation for gas production) and the overlying Condamine River Alluvial Aquifer (CRAA), using groundwater methane (CH4) concentration and isotopic composition (δ13C-CH4), groundwater tritium (3H) and dissolved organic carbon (DOC) concentration. A continuous mobile CH4 survey adjacent to CSG developments was used to determine the source signature of CH4 derived from the WCM. Trends in groundwater δ13C-CH4 versus CH4 concentration, in association with DOC concentration and 3H analysis, identify locations where CH4 in the groundwater of the CRAA most likely originates from the WCM. The methodology is widely applicable in unconventional gas development regions worldwide for providing an early indicator of geological pathways of hydraulic connectivity

    Quantum phase transition in a single-molecule quantum dot

    Full text link
    Quantum criticality is the intriguing possibility offered by the laws of quantum mechanics when the wave function of a many-particle physical system is forced to evolve continuously between two distinct, competing ground states. This phenomenon, often related to a zero-temperature magnetic phase transition, can be observed in several strongly correlated materials such as heavy fermion compounds or possibly high-temperature superconductors, and is believed to govern many of their fascinating, yet still unexplained properties. In contrast to these bulk materials with very complex electronic structure, artificial nanoscale devices could offer a new and simpler vista to the comprehension of quantum phase transitions. This long-sought possibility is demonstrated by our work in a fullerene molecular junction, where gate voltage induces a crossing of singlet and triplet spin states at zero magnetic field. Electronic tunneling from metallic contacts into the C60\rm{C_{60}} quantum dot provides here the necessary many-body correlations to observe a true quantum critical behavior.Comment: 8 pages, 5 figure

    Emergence of robust growth laws from optimal regulation of ribosome synthesis

    Get PDF
    Bacteria must constantly adapt their growth to changes in nutrient availability; yet despite large‐scale changes in protein expression associated with sensing, adaptation, and processing different environmental nutrients, simple growth laws connect the ribosome abundance and the growth rate. Here, we investigate the origin of these growth laws by analyzing the features of ribosomal regulation that coordinate proteome‐wide expression changes with cell growth in a variety of nutrient conditions in the model organism Escherichia coli. We identify supply‐driven feedforward activation of ribosomal protein synthesis as the key regulatory motif maximizing amino acid flux, and autonomously guiding a cell to achieve optimal growth in different environments. The growth laws emerge naturally from the robust regulatory strategy underlying growth rate control, irrespective of the details of the molecular implementation. The study highlights the interplay between phenomenological modeling and molecular mechanisms in uncovering fundamental operating constraints, with implications for endogenous and synthetic design of microorganisms.ISSN:1744-429

    Rapid Environmental Change over the Past Decade Revealed by Isotopic Analysis of the California Mussel in the Northeast Pacific

    Get PDF
    The anthropogenic input of fossil fuel carbon into the atmosphere results in increased carbon dioxide (CO2) into the oceans, a process that lowers seawater pH, decreases alkalinity and can inhibit the production of shell material. Corrosive water has recently been documented in the northeast Pacific, along with a rapid decline in seawater pH over the past decade. A lack of instrumentation prior to the 1990s means that we have no indication whether these carbon cycle changes have precedence or are a response to recent anthropogenic CO2 inputs. We analyzed stable carbon and oxygen isotopes (δ13C, δ18O) of decade-old California mussel shells (Mytilus californianus) in the context of an instrumental seawater record of the same length. We further compared modern shells to shells from 1000 to 1340 years BP and from the 1960s to the present and show declines in the δ13C of modern shells that have no historical precedent. Our finding of decline in another shelled mollusk (limpet) and our extensive environmental data show that these δ13C declines are unexplained by changes to the coastal food web, upwelling regime, or local circulation. Our observed decline in shell δ13C parallels other signs of rapid changes to the nearshore carbon cycle in the Pacific, including a decline in pH that is an order of magnitude greater than predicted by an equilibrium response to rising atmospheric CO2, the presence of low pH water throughout the region, and a record of a similarly steep decline in δ13C in algae in the Gulf of Alaska. These unprecedented changes and the lack of a clear causal variable underscores the need for better quantifying carbon dynamics in nearshore environments

    Wing pathology of white-nose syndrome in bats suggests life-threatening disruption of physiology

    Get PDF
    White-nose syndrome (WNS) is causing unprecedented declines in several species of North American bats. The characteristic lesions of WNS are caused by the fungus Geomyces destructans, which erodes and replaces the living skin of bats while they hibernate. It is unknown how this infection kills the bats. We review here the unique physiological importance of wings to hibernating bats in relation to the damage caused by G. destructans and propose that mortality is caused by catastrophic disruption of wing-dependent physiological functions. Mechanisms of disease associated with G. destructans seem specific to hibernating bats and are most analogous to disease caused by chytrid fungus in amphibians

    Underlying Mechanisms of Gene–Environment Interactions in Externalizing Behavior: A Systematic Review and Search for Theoretical Mechanisms

    Get PDF
    corecore