69 research outputs found

    The emergent rhizosphere: imaging the development of the porous architecture at the root-soil interface

    Get PDF
    The rhizosphere is the zone of soil infuenced by a plant root and is critical for plant health and nutrient acquisition. All below ground resources must pass through this dynamic zone prior to their capture by plant roots. However, researching the undisturbed rhizosphere has proved very challenging. Here we compare the temporal changes to the intact rhizosphere pore structure during the emergence of a developing root system in diferent soils. High resolution X-ray Computed Tomography (CT) was used to quantify the impact of root development on soil structural change, at scales relevant to individual micro-pores and aggregates (µm). A comparison of micro-scale structural evolution in homogenously packed soils highlighted the impacts of a penetrating root system in changing the surrounding porous architecture and morphology. Results indicate the structural zone of infuence of a root can be more localised than previously reported (µm scale rather than mm scale). With time, growing roots signifcantly alter the soil physical environment in their immediate vicinity through reducing root-soil contact and crucially increasing porosity at the root-soil interface and not the converse as has often been postulated. This ‘rhizosphere pore structure’ and its impact on associated dynamics are discussed

    Binary and Millisecond Pulsars at the New Millennium

    Get PDF
    We review the properties and applications of binary and millisecond pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1300. There are now 56 binary and millisecond pulsars in the Galactic disk and a further 47 in globular clusters. This review is concerned primarily with the results and spin-offs from these surveys which are of particular interest to the relativity community.Comment: 59 pages, 26 figures, 5 tables. Accepted for publication in Living Reviews in Relativity (http://www.livingreviews.org

    Poplar GTL1 Is a Ca2+/Calmodulin-Binding Transcription Factor that Functions in Plant Water Use Efficiency and Drought Tolerance

    Get PDF
    Diminishing global fresh water availability has focused research to elucidate mechanisms of water use in poplar, an economically important species. A GT-2 family trihelix transcription factor that is a determinant of water use efficiency (WUE), PtaGTL1 (GT-2 like 1), was identified in Populus tremula × P. alba (clone 717-IB4). Like other GT-2 family members, PtaGTL1 contains both N- and C-terminal trihelix DNA binding domains. PtaGTL1 expression, driven by the Arabidopsis thaliana AtGTL1 promoter, suppressed the higher WUE and drought tolerance phenotypes of an Arabidopsis GTL1 loss-of-function mutation (gtl1-4). Genetic suppression of gtl1-4 was associated with increased stomatal density due to repression of Arabidopsis STOMATAL DENSITY AND DISTRIBUTION1 (AtSDD1), a negative regulator of stomatal development. Electrophoretic mobility shift assays (EMSA) indicated that a PtaGTL1 C-terminal DNA trihelix binding fragment (PtaGTL1-C) interacted with an AtSDD1 promoter fragment containing the GT3 box (GGTAAA), and this GT3 box was necessary for binding. PtaGTL1-C also interacted with a PtaSDD1 promoter fragment via the GT2 box (GGTAAT). PtaSDD1 encodes a protein with 60% primary sequence identity with AtSDD1. In vitro molecular interaction assays were used to determine that Ca2+-loaded calmodulin (CaM) binds to PtaGTL1-C, which was predicted to have a CaM-interaction domain in the first helix of the C-terminal trihelix DNA binding domain. These results indicate that, in Arabidopsis and poplar, GTL1 and SDD1 are fundamental components of stomatal lineage. In addition, PtaGTL1 is a Ca2+-CaM binding protein, which infers a mechanism by which environmental stimuli can induce Ca2+ signatures that would modulate stomatal development and regulate plant water use

    Long-Range Autocorrelations of CpG Islands in the Human Genome

    Get PDF
    In this paper, we use a statistical estimator developed in astrophysics to study the distribution and organization of features of the human genome. Using the human reference sequence we quantify the global distribution of CpG islands (CGI) in each chromosome and demonstrate that the organization of the CGI across a chromosome is non-random, exhibits surprisingly long range correlations (10 Mb) and varies significantly among chromosomes. These correlations of CGI summarize functional properties of the genome that are not captured when considering variation in any particular separate (and local) feature. The demonstration of the proposed methods to quantify the organization of CGI in the human genome forms the basis of future studies. The most illuminating of these will assess the potential impact on phenotypic variation of inter-individual variation in the organization of the functional features of the genome within and among chromosomes, and among individuals for particular chromosomes

    Undifferentiated carcinoma of the salivary gland in a chinchilla (<i>Chinchilla lanigera</i>)

    No full text
    A 12-year-old chinchilla (Chinchilla lanigera) developed a slow-growing, soft, fluctuating, nonpainful mass on the ventral neck with focally extensive alopecia over a period of approximately 8 months. On postmortem examination, an extensive, multilobulated, cystic, neoplastic mass extended subcutaneously over the ventral and lateral neck with metastatic spread to submandibular lymph nodes, spleen, liver, and lungs. Neoplastic cells were strongly positive for vimentin and pan-cytokeratin but were negative for alpha–smooth muscle actin, S100, and myosin; no intracytoplasmic myofibrils were detected on phosphotungstic acid hematoxylin staining. Histologic and immunohistochemical examination of the mass led to a diagnosis of undifferentiated carcinoma of the salivary gland and contributes to the paucity of knowledge concerning neoplasia in chinchillas

    Are you sitting comfortably? How current self-driving car concepts overlook motion sickness, and the impact it has on comfort and productivity

    No full text
    A proposed benefit of self-driving cars is that of increased comfort and productivity of the occupants. Self-driving vehicle concepts and published research show the desire for engagement in non-driving related tasks while traveling in such vehicles. Based on survey results and financial productivity estimations, it is likely that completing work activities within such vehicles will be desirable, even expected. These predictions, along with current concepts for self-driving vehicles, fail to consider motion sickness. This paper explores why motion sickness is likely to be a factor in these vehicles, and explicit implications with a range of in-car non-driving related activities is discussed. Through a critique of current concepts, a contrast between that which is advertised, and what may be possible is highlighted and discussed. The importance for inclusivity in future self-driving vehicles considering demographic differences in motion sickness susceptibility is highlighted, and design recommendations for future self-driving vehicles are made
    • …
    corecore