584 research outputs found

    A functional methylome map of ulcerative colitis

    Get PDF
    The etiology of inflammatory bowel diseases is only partially explained by the current genetic risk map. It is hypothesized that environmental factors modulate the epigenetic landscape and thus contribute to disease susceptibility, manifestation, and progression. To test this, we analyzed DNA methylation (DNAm), a fundamental mechanism of epigenetic long-term modulation of gene expression. We report a three-layer epigenome-wide association study (EWAS) using intestinal biopsies from 10 monozygotic twin pairs (n = 20 individuals) discordant for manifestation of ulcerative colitis (UC). Genome-wide expression scans were generated using Affymetrix UG 133 Plus 2.0 arrays (layer 1). Genome-wide DNAm scans were carried out using Illumina 27k Infinium Bead Arrays to identify methylation variable positions (MVPs, layer 2), and MeDIP-chip on Nimblegen custom 385k Tiling Arrays to identify differentially methylated regions (DMRs, layer 3). Identified MVPs and DMRs were validated in two independent patient populations by quantitative real-time PCR and bisulfite-pyrosequencing (n = 185). The EWAS identified 61 disease-associated loci harboring differential DNAm in cis of a differentially expressed transcript. All constitute novel candidate risk loci for UC not previously identified by GWAS. Among them are several that have been functionally implicated in inflammatory processes, e.g., complement factor CFI, the serine protease inhibitor SPINK4, and the adhesion molecule THY1 (also known as CD90). Our study design excludes nondisease inflammation as a cause of the identified changes in DNAm. This study represents the first replicated EWAS of UC integrated with transcriptional signatures in the affected tissue and demonstrates the power of EWAS to uncover unexplained disease risk and molecular events of disease manifestation

    Enhanced Tearing by Electrical Stimulation of the Anterior Ethmoid Nerve

    Get PDF
    PURPOSE. Electrical neurostimulation enhances tear secretion, and can be applied to treatment of dry eye disease. Using a chronic implant, we evaluate the effects of stimulating the anterior ethmoid nerve on the aqueous, lipid, and protein content of secreted tears. METHODS. Neurostimulators were implanted beneath the nasal mucosa in 13 New Zealand white rabbits. Stimulations (2.3-2.8 mA pulses of 75-875 ls in duration repeated at 30-100 Hz for 3 minutes) were performed daily, for 3 weeks to measure changes in tear volume (Schirmer test), osmolarity (TearLab osmometer), lipid (Oil-Red-O staining), and protein (BCA assay, mass spectrometry). RESULTS. Stimulation of the anterior ethmoid nerve in the frequency range of 30 to 90 Hz increased tear volume by 92% to 133% (P 0.01). Modulating the treatment with 50% duty cycle (3 seconds of stimulation repeated every 6 seconds) increased tear secretion an additional 23% above continuous stimulation (P 0.01). Tear secretion returned to baseline levels within 7 minutes after stimulation ended. Tear film osmolarity decreased by 7 mOsmol/ L, tear lipid increased by 24% to 36% and protein concentration increased by 48% (P 0.05). Relative abundance of the lacrimal gland proteins remained the same, while several serum and corneal proteins decreased with stimulation (P 0.05). CONCLUSIONS. Electrical stimulation of the anterior ethmoid nerve increased aqueous tear volume, reduced tear osmolarity, added lipid, and increased the concentration of normal tear proteins. Human studies with an intranasal stimulator should verify these effects in patients with aqueous-and lipid-deficient forms of dry eye disease

    Genome-wide analyses for personality traits identify six genomic loci and show correlations with psychiatric disorders

    Get PDF
    Personality is influenced by genetic and environmental factors1 and associated with mental health. However, the underlying genetic determinants are largely unknown. We identified six genetic loci, including five novel loci2,3, significantly associated with personality traits in a meta-analysis of genome-wide association studies (N = 123,132–260,861). Of these genomewide significant loci, extraversion was associated with variants in WSCD2 and near PCDH15, and neuroticism with variants on chromosome 8p23.1 and in L3MBTL2. We performed a principal component analysis to extract major dimensions underlying genetic variations among five personality traits and six psychiatric disorders (N = 5,422–18,759). The first genetic dimension separated personality traits and psychiatric disorders, except that neuroticism and openness to experience were clustered with the disorders. High genetic correlations were found between extraversion and attention-deficit– hyperactivity disorder (ADHD) and between openness and schizophrenia and bipolar disorder. The second genetic dimension was closely aligned with extraversion–introversion and grouped neuroticism with internalizing psychopathology (e.g., depression or anxiety)

    Maternal environment shapes the life history and susceptibility to malaria of Anopheles gambiae mosquitoes

    Get PDF
    BACKGROUND: It is becoming generally recognized that an individual's phenotype can be shaped not only by its own genotype and environmental experience, but also by its mother's environment and condition. Maternal environmental factors can influence mosquitoes' population dynamics and susceptibility to malaria, and therefore directly and indirectly the epidemiology of malaria. METHODS: In a full factorial experiment, the effects of two environmental stressors - food availability and infection with the microsporidian parasite Vavraia culicis - of female mosquitoes (Anopheles gambiae sensu stricto) on their offspring's development, survival and susceptibility to malaria were studied. RESULTS: The offspring of A. gambiae s.s. mothers infected with V. culicis developed into adults more slowly than those of uninfected mothers. This effect was exacerbated when mothers were reared on low food. Maternal food availability had no effect on the survival of their offspring up to emergence, and microsporidian infection decreased survival only slightly. Low food availability for mothers increased and V. culicis-infection of mothers decreased the likelihood that the offspring fed on malaria-infected blood harboured malaria parasites (but neither maternal treatment influenced their survival up to dissection). CONCLUSIONS: Resource availability and infection with V. culicis of A. gambiae s.s. mosquitoes not only acted as direct environmental stimuli for changes in the success of one generation, but could also lead to maternal effects. Maternal V. culicis infection could make offspring more resistant and less likely to transmit malaria, thus enhancing the efficacy of the microsporidian for the biological control of malaria

    Rac Inhibition Reverses the Phenotype of Fibrotic Fibroblasts

    Get PDF
    Background: Fibrosis, the excessive deposition of scar tissue by fibroblasts, is one of the largest groups of diseases for which there is no therapy. Fibroblasts from lesional areas of scleroderma patients possess elevated abilities to contract matrix and produce alpha-smooth muscle actin (alpha-SMA), type I collagen and CCN2 (connective tissue growth factor, CTGF). The basis for this phenomenon is poorly understood, and is a necessary prerequisite for developing novel, rational anti-fibrotic strategies.Methods and Findings: Compared to healthy skin fibroblasts, dermal fibroblasts cultured from lesional areas of scleroderma (SSc) patients possess elevated Rac activity. NSC23766, a Rac inhibitor, suppressed the persistent fibrotic phenotype of lesional SSc fibroblasts. NSC23766 caused a decrease in migration on and contraction of matrix, and alpha-SMA, type I collagen and CCN2 mRNA and protein expression. SSc fibroblasts possessed elevated Akt phosphorylation, which was also blocked by NSC23766. Overexpression of rac1 in normal fibroblasts induced matrix contraction and alpha-SMA, type I collagen and CCN2 mRNA and protein expression. Rac1 activity was blocked by PI3kinase/Akt inhibition. Basal fibroblast activity was not affected by NSC23766.Conclusion: Rac inhibition may be considered as a novel treatment for the fibrosis observed in SSc

    Mechanically activated catalyst mixing for high-yield boron nitride nanotube growth

    Get PDF
    Boron nitride nanotubes (BNNTs) have many fascinating properties and a wide range of applications. An improved ball milling method has been developed for high-yield BNNT synthesis, in which metal nitrate, such as Fe(NO(3))(3), and amorphous boron powder are milled together to prepare a more effective precursor. The heating of the precursor in nitrogen-containing gas produces a high density of BNNTs with controlled structures. The chemical bonding and structure of the synthesized BNNTs are precisely probed by near-edge X-ray absorption fine structure spectroscopy. The higher efficiency of the precursor containing milling-activated catalyst is revealed by thermogravimetric analyses. Detailed X-ray diffraction and X-ray photoelectron spectroscopy investigations disclose that during ball milling the Fe(NO(3))(3) decomposes to Fe which greatly accelerates the nitriding reaction and therefore increases the yield of BNNTs. This improved synthesis method brings the large-scale production and application of BNNTs one step closer

    Underestimated Effect Sizes in GWAS: Fundamental Limitations of Single SNP Analysis for Dichotomous Phenotypes

    Get PDF
    Complex diseases are often highly heritable. However, for many complex traits only a small proportion of the heritability can be explained by observed genetic variants in traditional genome-wide association (GWA) studies. Moreover, for some of those traits few significant SNPs have been identified. Single SNP association methods test for association at a single SNP, ignoring the effect of other SNPs. We show using a simple multi-locus odds model of complex disease that moderate to large effect sizes of causal variants may be estimated as relatively small effect sizes in single SNP association testing. This underestimation effect is most severe for diseases influenced by numerous risk variants. We relate the underestimation effect to the concept of non-collapsibility found in the statistics literature. As described, continuous phenotypes generated with linear genetic models are not affected by this underestimation effect. Since many GWA studies apply single SNP analysis to dichotomous phenotypes, previously reported results potentially underestimate true effect sizes, thereby impeding identification of true effect SNPs. Therefore, when a multi-locus model of disease risk is assumed, a multi SNP analysis may be more appropriate

    Alu pair exclusions in the human genome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The human genome contains approximately one million <it>Alu </it>elements which comprise more than 10% of human DNA by mass. <it>Alu </it>elements possess direction, and are distributed almost equally in positive and negative strand orientations throughout the genome. Previously, it has been shown that closely spaced <it>Alu </it>pairs in opposing orientation (inverted pairs) are found less frequently than <it>Alu </it>pairs having the same orientation (direct pairs). However, this imbalance has only been investigated for <it>Alu </it>pairs separated by 650 or fewer base pairs (bp) in a study conducted prior to the completion of the draft human genome sequence.</p> <p>Results</p> <p>We performed a comprehensive analysis of all (> 800,000) full-length <it>Alu </it>elements in the human genome. This large sample size permits detection of small differences in the ratio between inverted and direct <it>Alu </it>pairs (I:D). We have discovered a significant depression in the full-length <it>Alu </it>pair I:D ratio that extends to repeat pairs separated by ≤ 350,000 bp. Within this imbalance bubble (those <it>Alu </it>pairs separated by ≤ 350,000 bp), direct pairs outnumber inverted pairs. Using PCR, we experimentally verified several examples of inverted <it>Alu </it>pair exclusions that were caused by deletions.</p> <p>Conclusions</p> <p>Over 50 million full-length <it>Alu </it>pairs reside within the I:D imbalance bubble. Their collective impact may represent one source of <it>Alu </it>element-related human genomic instability that has not been previously characterized.</p
    corecore