24 research outputs found

    Defective Sphingosine-1-phosphate metabolism is a druggable target in Huntington's disease

    Get PDF
    Huntington's disease is characterized by a complex and heterogeneous pathogenic profile. Studies have shown that disturbance in lipid homeostasis may represent a critical determinant in the progression of several neurodegenerative disorders. The recognition of perturbed lipid metabolism is only recently becoming evident in HD. In order to provide more insight into the nature of such a perturbation and into the effect its modulation may have in HD pathology, we investigated the metabolism of Sphingosine-1-phosphate (S1P), one of the most important bioactive lipids, in both animal models and patient samples. Here, we demonstrated that S1P metabolism is significantly disrupted in HD even at early stage of the disease and importantly, we revealed that such a dysfunction represents a common denominator among multiple disease models ranging from cells to humans through mouse models. Interestingly, the in vitro anti-apoptotic and the pro-survival actions seen after modulation of S1P-metabolizing enzymes allows this axis to emerge as a new druggable target and unfolds its promising therapeutic potential for the development of more effective and targeted interventions against this incurable condition

    Re-configuration of sphingolipid metabolism by oncogenic transformation

    No full text
    The sphingolipids are one of the major lipid families in eukaryotes, incorporating a diverse array of structural variants that exert a powerful influence over cell fate and physiology. Increased expression of sphingosine kinase 1 (SPHK1), which catalyses the synthesis of the pro-survival, pro-angiogenic metabolite sphingosine 1-phosphate (S1P), is well established as a hallmark of multiple cancers. Metabolic alterations that reduce levels of the pro-apoptotic lipid ceramide, particularly its glucosylation by glucosylceramide synthase (GCS), have frequently been associated with cancer drug resistance. However, the simple notion that the balance between ceramide and S1P, often referred to as the sphingolipid rheostat, dictates cell survival contrasts with recent studies showing that highly potent and selective SPHK1 inhibitors do not affect cancer cell proliferation or survival, and studies demonstrating higher ceramide levels in some metastatic cancers. Recent reports have implicated other sphingolipid metabolic enzymes such as acid sphingomyelinase (ASM) more strongly in cancer pathogenesis, and highlight lysosomal sphingolipid metabolism as a possible weak point for therapeutic targeting in cancer. This review describes the evidence implicating different sphingolipid metabolic enzymes and their products in cancer pathogenesis, and suggests how newer systems-level approaches may improve our overall understanding of how oncogenic transformation reconfigures sphingolipid metabolism

    Methylation of translation-associated proteins in Saccharomyces cerevisiae: Identification of methylated lysines and their methyltransferases

    Full text link
    This study aimed to identify sites of lysine methylation in Saccharomyces cerevisiae and the associated methyltransferases. Hexapeptide ligand affinity chromatography was used to normalize the abundance levels of proteins in whole cell lysate. MS/MS, in association with antibody-based detection, was then used to identify lysine methylated proteins and the precise sites of modification. Lysine methylation was found on the proteins elongation factor (EF) 1-α, 2, and 3A, as well as ribosomal proteins 40S S18-A/B, 60S L11-A/B, L18-A/B, and L42-A/B. Precise sites were mapped in all cases. Single-gene knockouts of known and putative methyltransferase(s), in association with MS/MS, showed that EF1-α is monomethylated by Efm1 at lysin 30 and dimethylated by See1 at lysine 316. Methyltransferase Rkm1 was found to monomethylate 40S ribosomal protein S18-A/B at lysine 48. Knockout analysis also revealed that putative methyltransferase YBR271W affects the methylation of proteins EF2 and 3A; this was detected by Western blotting and immunodetection. This methyltransferase shows strong interspecies conservation and a tryptophan-containing motif associated with its active site. We suggest that enzyme YBR271W is named EF methyltransferase 2 (Efm2), in line with the recent naming of YHL039W as Efm1. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

    A Novel Function of Sphingosine Kinase 2 in the Metabolism of Sphinga-4,14-Diene Lipids

    Get PDF
    The number, position, and configuration of double bonds in lipids affect membrane fluidity and the recruitment of signaling proteins. Studies on mammalian sphingolipids have focused on those with a saturated sphinganine or mono-unsaturated sphingosine long chain base. Using high-resolution liquid chromatography-tandem mass spectrometry (LC-MS/MS), we observed a marked accumulation of lipids containing a di-unsaturated sphingadiene base in the hippocampus of mice lacking the metabolic enzyme sphingosine kinase 2 (SphK2). The double bonds were localized to positions C4-C5 and C14-C15 of sphingadiene using ultraviolet photodissociation-tandem mass spectrometry (UVPD-MS/MS). Phosphorylation of sphingoid bases by sphingosine kinase 1 (SphK1) or SphK2 forms the penultimate step in the lysosomal catabolism of all sphingolipids. Both SphK1 and SphK2 phosphorylated sphinga-4,14-diene as efficiently as sphingosine, however deuterated tracer experiments in an oligodendrocyte cell line demonstrated that ceramides with a sphingosine base are more rapidly metabolized than those with a sphingadiene base. Since SphK2 is the dominant sphingosine kinase in brain, we propose that the accumulation of sphingadiene-based lipids in SphK2-deficient brains results from the slower catabolism of these lipids, combined with a bottleneck in the catabolic pathway created by the absence of SphK2. We have therefore uncovered a previously unappreciated role for SphK2 in lipid quality control

    A selective inhibitor of ceramide synthase 1 reveals a novel role in fat metabolism

    Get PDF
    Specific forms of the lipid ceramide, synthesized by the ceramide synthase enzyme family, are believed to regulate metabolic physiology. Genetic mouse models have established C16 ceramide as a driver of insulin resistance in liver and adipose tissue. C18 ceramide, synthesized by ceramide synthase 1 (CerS1), is abundant in skeletal muscle and suggested to promote insulin resistance in humans. We herein describe the first isoform-specific ceramide synthase inhibitor, P053, which inhibits CerS1 with nanomolar potency. Lipidomic profiling shows that P053 is highly selective for CerS1. Daily P053 administration to mice fed a high-fat diet (HFD) increases fatty acid oxidation in skeletal muscle and impedes increases in muscle triglycerides and adiposity, but does not protect against HFD-induced insulin resistance. Our inhibitor therefore allowed us to define a role for CerS1 as an endogenous inhibitor of mitochondrial fatty acid oxidation in muscle and regulator of whole-body adiposity
    corecore