488 research outputs found
Relating Anaerobic Digestion Microbial Community and Process Function
Anaerobic digestion (AD) involves a consortium of microorganisms that convert substrates into biogas containing methane for renewable energy. The technology has suffered from the perception of being periodically unstable due to limited understanding of the relationship between microbial community structure and function. The emphasis of this review is to describe microbial communities in digesters and quantitative and qualitative relationships between community structure and digester function. Progress has been made in the past few decades to identify key microorganisms influencing AD. Yet, more work is required to realize robust, quantitative relationships between microbial community structure and functions such as methane production rate and resilience after perturbations. Other promising areas of research for improved AD may include methods to increase/control (1) hydrolysis rate, (2) direct interspecies electron transfer to methanogens, (3) community structure–function relationships of methanogens, (4) methanogenesis via acetate oxidation, and (5) bioaugmentation to study community–activity relationships or improve engineered bioprocesses
Relating Methanogen Community Structure and Anaerobic Digester Function
Much remains unknown about the relationships between microbial community structure and anaerobic digester function. However, knowledge of links between community structure and function, such as specific methanogenic activity (SMA) and COD removal rate, are valuable to improve anaerobic bioprocesses. In this work, quantitative structure–activity relationships (QSARs) were developed using multiple linear regression (MLR) to predict SMA using methanogen community structure descriptors for 49 cultures. Community descriptors were DGGE demeaned standardized band intensities for amplicons of a methanogen functional gene (mcrA). First, predictive accuracy of MLR QSARs was assessed using cross validation with training (n = 30) and test sets (n = 19) for glucose and propionate SMA data. MLR equations correlating band intensities and SMA demonstrated good predictability for glucose (q2 = 0.54) and propionate (q2 = 0.53). Subsequently, data from all 49 cultures were used to develop QSARs to predict SMA values. Higher intensities of two bands were correlated with higher SMA values; high abundance of methanogens associated with these two bands should be encouraged to attain high SMA values. QSARs are helpful tools to identify key microorganisms or to study and improve many bioprocesses. Development of new, more robust QSARs is encouraged for anaerobic digestion or other bioprocesses, including nitrification, nitritation, denitrification, anaerobic ammonium oxidation, and enhanced biological phosphorus removal
Topologically Stable Electroweak Flux Tube
We show that for a large range of parameters in a
electroweak theory with two Higgs doublets there may exist classically stable
flux tubes of Z boson magnetic field. In a limit of an extra global symmetry, these flux-tubes become topologically stable. These results are
automatically valid even if is gauged.Comment: 10 pages, LATE
Moisture damage assessment using surface energy, bitumen stripping and the SATS moisture conditioning procedure
Durability is one of the most important properties of an asphalt mixture. A key factor affecting the durability of asphalt pavements is moisture damage. Moisture damage generally results in the loss of strength of the mixture due to two main mechanisms; the loss of adhesion between bitumen and aggregate and the loss of cohesion within the mixture. Conventional test methods for evaluating moisture damage include tests conducted on loose bitumen-coated aggregates and those conducted on compacted asphalt mixtures. The former test methods are simpler and less expensive to conduct but are qualitative/subjective in nature and do not consider cohesive failure while the latter, though more quantitative, are based on bulky mechanical test set-ups and therefore require expensive equipment. Both test methods are, however, empirical in nature thus requiring extensive experience to interpret/use their results. The rolling bottle test (RBT) (EN 12697-11) for loose aggregate mixtures and the saturation ageing tensile stiffness (SATS) test (EN 12697-45) for compacted asphalt mixtures are two such methods, which experience suggests, could clearly discriminate between ‘good’ and ‘poor’ performing mixtures in the laboratory. A more fundamental approach based on surface energy (SE) measurements offers promise to better understand moisture damage. This article looks at results from the rolling bottle and the SATS tests in an attempt to better understand the underlying processes and mechanisms of moisture damage with the help of SE measurements on the constituent bitumen and aggregates. For this work, a set of bitumens and typical acidic and basic aggregate types (granite and limestone) were selected. Combinations of these materials were assessed using both the rolling bottle and SATS tests. The SE properties of the binders were measured using a dynamic contact angle Analyser and those of the aggregates using a dynamic vapour sorption device. From these SE measurements it was possible to predict the relative performance of both the simple RBT and the more complicated SATS test. Mineralogical composition of the aggregates determined using a mineral liberation analyser was used to explain the differences in performance of the mixtures considered
SQCD: A Geometric Apercu
We take new algebraic and geometric perspectives on the old subject of SQCD.
We count chiral gauge invariant operators using generating functions, or
Hilbert series, derived from the plethystic programme and the Molien-Weyl
formula. Using the character expansion technique, we also see how the global
symmetries are encoded in the generating functions. Equipped with these methods
and techniques of algorithmic algebraic geometry, we obtain the character
expansions for theories with arbitrary numbers of colours and flavours.
Moreover, computational algebraic geometry allows us to systematically study
the classical vacuum moduli space of SQCD and investigate such structures as
its irreducible components, degree and syzygies. We find the vacuum manifolds
of SQCD to be affine Calabi-Yau cones over weighted projective varieties.Comment: 49 pages, 1 figur
Fast linear algebra is stable
In an earlier paper, we showed that a large class of fast recursive matrix
multiplication algorithms is stable in a normwise sense, and that in fact if
multiplication of -by- matrices can be done by any algorithm in
operations for any , then it can be done
stably in operations for any . Here we extend
this result to show that essentially all standard linear algebra operations,
including LU decomposition, QR decomposition, linear equation solving, matrix
inversion, solving least squares problems, (generalized) eigenvalue problems
and the singular value decomposition can also be done stably (in a normwise
sense) in operations.Comment: 26 pages; final version; to appear in Numerische Mathemati
Jacobi-like bar mode instability of relativistic rotating bodies
We perform some numerical study of the secular triaxial instability of
rigidly rotating homogeneous fluid bodies in general relativity. In the
Newtonian limit, this instability arises at the bifurcation point between the
Maclaurin and Jacobi sequences. It can be driven in astrophysical systems by
viscous dissipation. We locate the onset of instability along several constant
baryon mass sequences of uniformly rotating axisymmetric bodies for compaction
parameter . We find that general relativity weakens the Jacobi
like bar mode instability, but the stabilizing effect is not very strong.
According to our analysis the critical value of the ratio of the kinetic energy
to the absolute value of the gravitational potential energy for compaction parameter as high as 0.275 is only 30% higher than the
Newtonian value. The critical value of the eccentricity depends very weakly on
the degree of relativity and for is only 2% larger than the
Newtonian value at the onset for the secular bar mode instability. We compare
our numerical results with recent analytical investigations based on the
post-Newtonian expansion.Comment: 15 pages, 8 figures, submitted to Phys. Rev.
Parity Violating Measurements of Neutron Densities
Parity violating electron nucleus scattering is a clean and powerful tool for
measuring the spatial distributions of neutrons in nuclei with unprecedented
accuracy. Parity violation arises from the interference of electromagnetic and
weak neutral amplitudes, and the of the Standard Model couples primarily
to neutrons at low . The data can be interpreted with as much confidence
as electromagnetic scattering. After briefly reviewing the present theoretical
and experimental knowledge of neutron densities, we discuss possible parity
violation measurements, their theoretical interpretation, and applications. The
experiments are feasible at existing facilities. We show that theoretical
corrections are either small or well understood, which makes the interpretation
clean. The quantitative relationship to atomic parity nonconservation
observables is examined, and we show that the electron scattering asymmetries
can be directly applied to atomic PNC because the observables have
approximately the same dependence on nuclear shape.Comment: 38 pages, 7 ps figures, very minor changes, submitted to Phys. Rev.
Health monitoring of operational structures - Initial results
Two techniques for damage localization (Structural Translational and Rotational Error Checking -- STRECH and MAtriX COmpletioN -- MAXCON) are described and applied to operational structures. The structures include a Horizontal Axis Wind Turbine (HAWT) blade undergoing a fatigue test and a highway bridge undergoing an induced damage test. STRECH is seen to provide a global damage indicator to assess the global damage state of a structure. STRECH is also seen to provide damage localization for static flexibility shapes or the first mode of simple structures. MAXCON is a robust damage localization tool using the higher order dynamics of a structure. Several options arc available to allow the procedure to be tailored to a variety of structures
Complex relationships among personality traits, job characteristics, and work behaviors
The aim of the study was to investigate the additive, mediating, and moderating effects of personality traits and job characteristics on work behaviors. Job applicants (N = 161) completed personality questionnaires measuring extraversion, neuroticism, achievement motivation, and experience seeking. One and a half years later, supervisors rated the applicants' job performance, and the job incumbents completed questionnaires about skill variety, autonomy, and feedback, work stress, job satisfaction, work self-efficacy, and propensity to leave. LISREL was used to test 15 hypotheses. Perceived feedback mediated the relationship between achievement motivation and job performance. Extraversion predicted work self-efficacy and job satisfaction. Work stress mediated the relationship between neuroticism and job satisfaction. Job satisfaction and experience seeking were related to propensity to leave. Autonomy, skill variety, and feedback were related to job satisfaction
- …