587 research outputs found

    Quenched chiral logarithms in lattice QCD with exact chiral symmetry

    Full text link
    We examine quenched chiral logarithms in lattice QCD with overlap Dirac quark. For 100 gauge configurations generated with the Wilson gauge action at β=5.8 \beta = 5.8 on the 83×24 8^3 \times 24 lattice, we compute quenched quark propagators for 12 bare quark masses. The pion decay constant is extracted from the pion propagator, and from which the lattice spacing is determined to be 0.147 fm. The presence of quenched chiral logarithm in the pion mass is confirmed, and its coefficient is determined to be δ=0.203±0.014 \delta = 0.203 \pm 0.014 , in agreement with the theoretical estimate in quenched chiral perturbation theory. Further, we obtain the topological susceptibility of these 100 gauge configurations by measuring the index of the overlap Dirac operator. Using a formula due to exact chiral symmetry, we obtain the η′ \eta' mass in quenched chiral perturbation theory, mη′=(901±64) m_{\eta'} = (901 \pm 64) Mev, and an estimate of δ=0.197±0.027 \delta = 0.197 \pm 0.027 , which is in good agreement with that determined from the pion mass.Comment: 24 pages, 6 EPS figures; v2: some clarifications added, to appear in Physical Review

    Disruption of marine habitats by artificial light at night from global coastal megacities

    Get PDF
    Half of globally significant megacities are situated near the coast, exposing urban marine ecosystems to multiple stressors such as waste-water discharge containing a host of organic and inorganic pollutants, air and noise pollution. In addition to these well recognized sources, artificial light at night (ALAN) pollution is inseparable from cities but poorly quantified in marine ecosystems to date. We have developed a time- and wavelength-resolving hydrological optical model that includes solar (daylight and twilight components), lunar and ALAN source terms and propagates these spectrally through a tidally varying water column using Beer’s Law. Our model shows that for 8 globally distributed cities surface ALAN dosages are up to a factor of 6 greater than moonlight, as ALAN intensities vary little throughout the night, over monthly or seasonal cycles. Moonlight only exceeds ALAN irradiances over the ±3-day period around full moon, and particularly during the brightest moons (mid-latitude winter, at zenith). Unlike the relatively stable surface ALAN, underwater ALAN varies spectrally and in magnitude throughout the night due to tidal cycles. The extent of ALAN in-water attenuation is location-specific, driven by the season, tidal range and cycle, and water clarity. This work highlights that marine ALAN ecosystem pollution is a particularly acute global change issue near some of the largest cities in the world

    The Importance of Time Congruity in the Organisation.

    Get PDF
    In 1991 Kaufman, Lane, and Lindquist proposed that time congruity in terms of an individual's time preferences and the time use methods of an organisation would lead to satisfactory performance and enhancement of quality of work and general life. The research reported here presents a study which uses commensurate person and job measures of time personality in an organisational setting to assess the effects of time congruity on one aspect of work life, job-related affective well-being. Results show that time personality and time congruity were found to have direct effects on well-being and the influence of time congruity was found to be mediated through time personality, thus contributing to the person–job (P–J) fit literature which suggests that direct effects are often more important than indirect effects. The study also provides some practical examples of ways to address some of the previously cited methodological issues in P–J fit research

    Chiral Logs in Quenched QCD

    Get PDF
    The quenched chiral logs are examined on a 163×2816^3 \times 28 lattice with Iwasaki gauge action and overlap fermions. The pion decay constant fπf_{\pi} is used to set the lattice spacing, a=0.200(3)fma = 0.200(3) {\rm fm}. With pion mass as low as ∼180MeV\sim 180 {\rm MeV}, we see the quenched chiral logs clearly in mπ2/mm_{\pi}^2/m and fPf_P, the pseudoscalar decay constant. We analyze the data to determine how low the pion mass needs to be in order for the quenched one-loop chiral perturbation theory (χ\chiPT) to apply. With the constrained curve-fitting method, we are able to extract the quenched chiral log parameter δ\delta together with other low-energy parameters. Only for mπ≤300MeVm_{\pi} \leq 300 {\rm MeV} do we obtain a consistent and stable fit with a constant δ\delta which we determine to be 0.24(3)(4) (at the chiral scale Λχ=0.8GeV\Lambda_{\chi}=0.8 {\rm GeV}). By comparing to the 123×2812^3 \times 28 lattice, we estimate the finite volume effect to be about 2.7% for the smallest pion mass. We also fitted the pion mass to the form for the re-summed cactus diagrams and found that its applicable region is extended farther than the range for the one-loop formula, perhaps up to mπ∼500−600m_{\pi} \sim 500-600 MeV. The scale independent δ\delta is determined to be 0.20(3) in this case. We study the quenched non-analytic terms in the nucleon mass and find that the coefficient C1/2C_{1/2} in the nucleon mass is consistent with the prediction of one-loop χ\chiPT\@. We also obtain the low energy constant L5L_5 from fπf_{\pi}. We conclude from this study that it is imperative to cover only the range of data with the pion mass less than ∼300MeV\sim 300 {\rm MeV} in order to examine the chiral behavior of the hadron masses and decay constants in quenched QCD and match them with quenched one-loop χ\chiPT\@.Comment: 37 pages and 24 figures, pion masses are fitted to the form for the re-summed cactus diagrams, figures added, to appear in PR

    Apparent phase transitions in finite one-dimensional sine-Gordon lattices

    Get PDF
    We study the one-dimensional sine-Gordon model as a prototype of roughening phenomena. In spite of the fact that it has been recently proven that this model can not have any phase transition [J. A. Cuesta and A. Sanchez, J. Phys. A 35, 2373 (2002)], Langevin as well as Monte Carlo simulations strongly suggest the existence of a finite temperature separating a flat from a rough phase. We explain this result by means of the transfer operator formalism and show as a consequence that sine-Gordon lattices of any practically achievable size will exhibit this apparent phase transition at unexpectedly large temperatures.Comment: 7 pages, 4 figure

    The Magnetic Field of the Solar Corona from Pulsar Observations

    Full text link
    We present a novel experiment with the capacity to independently measure both the electron density and the magnetic field of the solar corona. We achieve this through measurement of the excess Faraday rotation due to propagation of the polarised emission from a number of pulsars through the magnetic field of the solar corona. This method yields independent measures of the integrated electron density, via dispersion of the pulsed signal and the magnetic field, via the amount of Faraday rotation. In principle this allows the determination of the integrated magnetic field through the solar corona along many lines of sight without any assumptions regarding the electron density distribution. We present a detection of an increase in the rotation measure of the pulsar J1801−-2304 of approximately 160 \rad at an elongation of 0.95∘^\circ from the centre of the solar disk. This corresponds to a lower limit of the magnetic field strength along this line of sight of >393μG> 393\mu\mathrm{G}. The lack of precision in the integrated electron density measurement restricts this result to a limit, but application of coronal plasma models can further constrain this to approximately 20mG, along a path passing 2.5 solar radii from the solar limb. Which is consistent with predictions obtained using extensions to the Source Surface models published by Wilcox Solar ObservatoryComment: 16 pages, 4 figures (1 colour): Submitted to Solar Physic

    Dynamic Critical Behavior of the Chayes-Machta Algorithm for the Random-Cluster Model. I. Two Dimensions

    Full text link
    We study, via Monte Carlo simulation, the dynamic critical behavior of the Chayes-Machta dynamics for the Fortuin-Kasteleyn random-cluster model, which generalizes the Swendsen-Wang dynamics for the q-state Potts ferromagnet to non-integer q \ge 1. We consider spatial dimension d=2 and 1.25 \le q \le 4 in steps of 0.25, on lattices up to 1024^2, and obtain estimates for the dynamic critical exponent z_{CM}. We present evidence that when 1 \le q \lesssim 1.95 the Ossola-Sokal conjecture z_{CM} \ge \beta/\nu is violated, though we also present plausible fits compatible with this conjecture. We show that the Li-Sokal bound z_{CM} \ge \alpha/\nu is close to being sharp over the entire range 1 \le q \le 4, but is probably non-sharp by a power. As a byproduct of our work, we also obtain evidence concerning the corrections to scaling in static observables.Comment: LaTeX2e, 75 pages including 26 Postscript figure

    Rotation measure variations for 20 millisecond pulsars

    Full text link
    We report on variations in the mean position angle of the 20 millisecond pulsars being observed as part of the Parkes Pulsar Timing Array (PPTA) project. It is found that the observed variations are dominated by changes in the Faraday rotation occurring in the Earth's ionosphere. Two ionospheric models are used to correct for the ionospheric contribution and it is found that one based on the International Reference Ionosphere gave the best results. Little or no significant long-term variation in interstellar RM was found with limits typically about 0.1 rad m−2^{-2} yr−1^{-1} in absolute value. In a few cases, apparently significant RM variations over timescales of a few 100 days or more were seen. These are unlikely to be due to localised magnetised regions crossing the line of sight since the implied magnetic fields are too high. Most probably they are statistical fluctuations due to random spatial and temporal variations in the interstellar electron density and magnetic field along the line of sight.Comment: Accepted for publication in Astrophysics & Space Scienc

    Nonequilibrium wetting

    Full text link
    When a nonequilibrium growing interface in the presence of a wall is considered a nonequilibrium wetting transition may take place. This transition can be studied trough Langevin equations or discrete growth models. In the first case, the Kardar-Parisi-Zhang equation, which defines a very robust universality class for nonequilibrium moving interfaces, with a soft-wall potential is considered. While in the second, microscopic models, in the corresponding universality class, with evaporation and deposition of particles in the presence of hard-wall are studied. Equilibrium wetting is related to a particular case of the problem, it corresponds to the Edwards-Wilkinson equation with a potential in the continuum approach or to the fulfillment of detailed balance in the microscopic models. In this review we present the analytical and numerical methods used to investigate the problem and the very rich behavior that is observed with them.Comment: Review, 36 pages, 16 figure

    The New ‘Hidden Abode’: Reflections on Value and Labour in the New Economy

    Get PDF
    In a pivotal section of Capital, volume 1, Marx (1976: 279) notes that, in order to understand the capitalist production of value, we must descend into the ‘hidden abode of production’: the site of the labour process conducted within an employment relationship. In this paper we argue that by remaining wedded to an analysis of labour that is confined to the employment relationship, Labour Process Theory (LPT) has missed a fundamental shift in the location of value production in contemporary capitalism. We examine this shift through the work of Autonomist Marxists like Hardt and Negri, Lazaratto and Arvidsson, who offer theoretical leverage to prize open a new ‘hidden abode’ outside employment, for example in the ‘production of organization’ and in consumption. Although they can open up this new ‘hidden abode’, without LPT's fine-grained analysis of control/resistance, indeterminacy and structured antagonism, these theorists risk succumbing to empirically naive claims about the ‘new economy’. Through developing an expanded conception of a ‘new hidden abode’ of production, the paper demarcates an analytical space in which both LPT and Autonomist Marxism can expand and develop their understanding of labour and value production in today's economy. </jats:p
    • …
    corecore