10 research outputs found

    Kijashko-Pikovsky-Rabinovich noise generator: computer simulation and experiment

    Get PDF
    Characteristic regimes of Kijashko-Pikovsky-Rabinovich (KPR) noise generator were investigated on the basis of analytic theory and numerical simulation. Previously unknown regimes were found out. Modified circuit of KPR noise generator using the operational amplifiers was developed. Signal waveforms were measured. Several regimes of KPR noise generator predicted by simulation were experimentally verified. Especially the relaxation regimes for large gain factors of the operational amplifier were obtained

    Interaction of the modulated electron beam with inhomogeneous plasma: plasma density profile deformation and langmuir waves excitation

    No full text
    Nonlinear deformation of the initially linear plasma density profile due to the modulated electron beam is studied via computer simulation. In the initial time period the field slaves to the instantaneous profile of the plasma density. Langmuir waves excitation is suppressed by the density profile deformation. The character of the plasma density profile deformation for the late time period depends significantly on the plasma properties. Particularly, for plasma with hot electrons quasi-periodic generation of ion-acoustic pulses takes place in the vicinity of the initial point of plasma resonance.За допомогою комп’ютерного моделювання досліджується нелінійна деформація первісно лінійного профілю концентрації плазми модульованим електронним пучком. В початкові моменти часу поле підлаштовується під миттєві розподіли густини плазми. Збудження ленгмюрівських хвиль обмежується деформацією профілю концентрації. Характер деформації профілю концентрації плазми істотно залежить від параметрів плазми. Зокрема, для плазми з гарячими електронами поблизу первісної точки плазмового резонансу має місце квазіперіодична генерація іонно-акустичних імпульсів.С помощью компьютерного моделирования исследуется нелинейная деформация первоначально линейного профиля концентрации плазмы модулированным электронным пучком. В начальные моменты времени поле подстраивается под мгновенное распределение концентрации плазмы. Возбуждение ленгмюровских волн ограничивается деформацией профиля концентрации. Характер деформации профиля концентрации плазмы существенно зависит от параметров плазмы. В частности, для плазмы с горячими электронами в окрестности первоначальной точки плазменного резонанса имеет место квазипериодическая генерация ионно-акустических импульсов

    Deformation of the plasma concentration profile due field of the modulated electron beam: numerical simulation

    Get PDF
    Deformation of the concentration profile of the weakly inhomogeneous plasma due to the modulated electron beam was studied via computer simulation using big-particles-in-cells method. At the first stages the electric field increase in the local plasma resonance region was observed. It resulted to the density cavity formation. For the isothermic plasma the density cavity transformed into the plasma concentration jump. For plasma with the hot electrons ion-acoustic turbulence was observed at the late time points

    Evolution of electrons’ distribution function during their interactoin with plasma: numerical simulation

    Get PDF
    One-dimension numerical simulation of the beam-plasma system was carried out using the big-particles-in-cells method. Instantaneous velocity distribution of the beam electrons depending of the distance from injector was received. The distribution function was found to be oscillating and strongly irregular. This result corresponds with the data of the previous calculations and laboratory experiments. After averaging over the sufficiently long time interval the distribution function becomes smoothed and similar to a plateau that was observed in the laboratory experiments

    Plasma dynamics in the vicinity of the local plasma resonance point excited by pumping electric field or modulated electron beam

    No full text
    Excitation of the HF electric field in the local plasma resonance region (LPRR) of inhomogeneous plasma by pumping electric field or modulated electron beam results to appearance of the ponderomotive force that presses plasma out of this region. Density cavity is formed in the LPRR due to this field. Further dynamics in this region depends on the plasma properties. For plasma with hot electrons ion-acoustic pulses run away from the cavity. At the local density maximum the new peak of electric field is excited. It results to the formation of new density cavity, etc. For isothermal plasma the density jump is formedВозбуждение высокочастотного электрического поля в области локального плазменного резонанса (ОЛПР) неоднородной плазмы электрическим полем накачки или модулированным электронным пучком приводит к появлению пондеромоторной силы, выдавливающей плазму из этой области. Под действием этого поля в ОЛПР формируется ямка плотности. Последующая динамика в этой области зависит от свойств плазмы. Для плазмы с горячими электронами ионно-акустические импульсы разбегаются от ямки плотности. На локальном максимуме концентрации возбуждается новый всплеск электрического поля, приводящий к формированию новой ямки плотности, и т.д. В изотермической плазме формируется скачок плотности.Збудження високочастотного електричного поля в області локального плазмового резонансу (ОЛПР) неоднорідної плазми електричним полем накачування або модульованим електронним пучком приводить до появи пондеромоторної сили, яка витискає плазму з цієї області. Під дією цього поля в ОЛПР формується ямка густини. Подальша динаміка в цій області залежить від властивостей плазми. Для плазми з гарячими електронами іонно-акустичні імпульси розбігаються від ямки густини. На локальному максимумі концентрації збуджується новий сплеск електричного поля, що приводить до формування нової ямки густини, і т.д. В ізотермічній плазмі формується стрибок густини

    Numerical simulation of the beam-plasma turbulence spectrum evolution for weak beams

    Get PDF
    The results of the numerical simulation of weak non-relativistic monochromatic beam interaction with plasma are introduced. The modified PDP1 package for one-dimensional plasma systems simulation was used. Evolution of the phase portrait and electric field distribution during beam-plasma turbulence was investigated. Plasma oscillations spectra were obtained. Their temporal and spatial evolution was studied

    A ‘VISUAL’ APPROACH TO MENANDER - (A.K.) Petrides Menander, New Comedy and the Visual. Pp. xii + 322, ills. Cambridge: Cambridge University Press, 2014. Cased, £65, US$99. ISBN: 978-1-107-06843-8.

    Get PDF
    High-energy X-rays and gamma-rays from solar flares were discovered just over fifty years ago. Since that time, the standard for the interpretation of spatially integrated flare X-ray spectra at energies above several tens of keV has been the collisional thick-target model. After the launch of the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) in early 2002, X-ray spectra and images have been of sufficient quality to allow a greater focus on the energetic electrons responsible for the X-ray emission, including their origin and their interactions with the flare plasma and magnetic field. The result has been new insights into the flaring process, as well as more quantitative models for both electron acceleration and propagation, and for the flare environment with which the electrons interact. In this article we review our current understanding of electron acceleration, energy loss, and propagation in flares. Implications of these new results for the collisional thick-target model, for general flare models, and for future flare studies are discussed.Comment: This is an article from a monograph on the physics of solar flares, inspired by RHESSI observations. The individual articles are to appear in Space Science Reviews (2011

    Observational Aspects of Particle Acceleration in Large Solar Flares

    No full text
    corecore