5 research outputs found

    Classical and Quantum Considerations of Two-dimensional Gravity

    Full text link
    The two-dimensional theory of gravity describing a graviton-dilaton system is considered. The graviton-dilaton coupling can be fixed such that the quantum theory remains free of the conformal anomaly for any conformal dimension of the coupled matter system, even if the dilaton does not appear as Lagrange multiplier. Interaction terms are introduced and the system is analyzed and solutions are given at the classical level and at the quantum level by using canonical quantization.Comment: 18 page

    Avoiding degenerate coframes in an affine gauge approach to quantum gravity

    Get PDF
    In quantum models of gravity, it is surmized that configurations with degenerate coframes could occur during topology change of the underlying spacetime structure. However, the coframe is not the true Yang--Mills type gauge field of the translations, since it lacks the inhomogeneous gradient term in the gauge transformations. By explicitly restoring this ``hidden" piece within the framework of the affine gauge approach to gravity, one can avoid the metric or coframe degeneracy which would otherwise interfere with the integrations within the path integral. This is an important advantage for quantization.Comment: 14 pages, Preprint Cologne-thp-1993-H

    On 'Light' Fermions and Proton Stability in 'Big Divisor' D3/D7 Swiss Cheese Phenomenology

    Full text link
    Building up on our earlier work [1,2], we show the possibility of generating "light" fermion mass scales of MeV-GeV range (possibly related to first two generations of quarks/leptons) as well as eV (possibly related to first two generations of neutrinos) in type IIB string theory compactified on Swiss-Cheese orientifolds in the presence of a mobile space-time filling D3-$brane restricted to (in principle) stacks of fluxed D7-branes wrapping the "big" divisor \Sigma_B. This part of the paper is an expanded version of the latter half of section 3 of a published short invited review [3] written up by one of the authors [AM]. Further, we also show that there are no SUSY GUT-type dimension-five operators corresponding to proton decay, as well as estimate the proton lifetime from a SUSY GUT-type four-fermion dimension-six operator to be 10^{61} years. Based on GLSM calculations in [1] for obtaining the geometric Kaehler potential for the "big divisor", using further the Donaldson's algorithm, we also briefly discuss in the first of the two appendices, obtaining a metric for the Swiss-Cheese Calabi-Yau used, that becomes Ricci flat in the large volume limit.Comment: v2: 1+25 pages, Title modified and text thoroughly expanded including a brief discussion on obtaining Ricci-flat Swiss Cheese Calabi-Yau metrics using the Donaldson's algorithm, references added, to appear in EPJ

    Fermion Masses and Mixing in Intersecting Branes Scenarios

    Full text link
    We study the structure of Yukawa couplings in intersecting D6-branes wrapping a factorizable 6-torus compact space T^6. Models with MSSM-like spectrum are analyzed and found to fail in predicting the quark mass spectrum because of the way in which the family structure for the left-handed, right-handed quarks and, eventually, the Higgses is `factorized' among the different tori. In order to circumvent this, we present a model with three supersymmetric Higgs doublets which satisfies the anomaly cancellation condition in a more natural way than the previous models, where quarks were not treated universally regarding their branes assignments, or some particular branes were singled out being invariant under orientifold projection. In our model, the family structures for the left, right quarks, left leptons and the Higgses arise from one of the tori and can naturally lead to universal strength Yukawa couplings which accommodate the quark mass hierarchy and the mixing angles.Comment: 21 pages, latex, matches the Phys. Rev. D versio
    corecore