45 research outputs found

    Study of Molecular Interactions in Binary Mixtures of Diethyl Carbonate + Benzene Derivatives at Different Temperatures

    Get PDF
    Investigation on the molecular interactions between binary mixtures containing diethyl carbonate in combination with nitrobenzene, chlorobenzene and aniline is presented. Ultrasonic velocity and density values were determined for the individual components as well as binary mixtures of the above benzene derivatives with diethyl carbonate at temperatures (293.15, 298.15, 303.15, 308.15, 313.15, 318.15 and 323.15) K over the entire composition range. Further, adiabatic compressibility and acoustic impedance values were calculated using the experimental results. In addition to these parameters, the excess parameters like excess adiabatic compressibility, excess acoustic impedance and deviation in ultrasonic velocity were also obtained. Based on all these results, molecular interactions among the selected components were discussed

    Faecal streptococci in fresh frozen shrimp

    Get PDF
    Present limit of faecal streptococci as 100/g in fresh frozen shrimp was found to be too strict a standard commercially prepared products. Statistical analysis of the data collected indicates that fixing the maximum permissible limit as 1000/g will be a more workable proposition

    Chronic neuropsychiatric sequelae of SARS‐CoV‐2: Protocol and methods from the Alzheimer's Association Global Consortium

    Get PDF
    Introduction Coronavirus disease 2019 (COVID-19) has caused >3.5 million deaths worldwide and affected >160 million people. At least twice as many have been infected but remained asymptomatic or minimally symptomatic. COVID-19 includes central nervous system manifestations mediated by inflammation and cerebrovascular, anoxic, and/or viral neurotoxicity mechanisms. More than one third of patients with COVID-19 develop neurologic problems during the acute phase of the illness, including loss of sense of smell or taste, seizures, and stroke. Damage or functional changes to the brain may result in chronic sequelae. The risk of incident cognitive and neuropsychiatric complications appears independent from the severity of the original pulmonary illness. It behooves the scientific and medical community to attempt to understand the molecular and/or systemic factors linking COVID-19 to neurologic illness, both short and long term. Methods This article describes what is known so far in terms of links among COVID-19, the brain, neurological symptoms, and Alzheimer's disease (AD) and related dementias. We focus on risk factors and possible molecular, inflammatory, and viral mechanisms underlying neurological injury. We also provide a comprehensive description of the Alzheimer's Association Consortium on Chronic Neuropsychiatric Sequelae of SARS-CoV-2 infection (CNS SC2) harmonized methodology to address these questions using a worldwide network of researchers and institutions. Results Successful harmonization of designs and methods was achieved through a consensus process initially fragmented by specific interest groups (epidemiology, clinical assessments, cognitive evaluation, biomarkers, and neuroimaging). Conclusions from subcommittees were presented to the whole group and discussed extensively. Presently data collection is ongoing at 19 sites in 12 countries representing Asia, Africa, the Americas, and Europe. Discussion The Alzheimer's Association Global Consortium harmonized methodology is proposed as a model to study long-term neurocognitive sequelae of SARS-CoV-2 infection

    Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicity

    Get PDF
    The SARS-CoV-2 Omicron BA.1 variant emerged in 20211 and has multiple mutations in its spike protein2. Here we show that the spike protein of Omicron has a higher affinity for ACE2 compared with Delta, and a marked change in its antigenicity increases Omicron’s evasion of therapeutic monoclonal and vaccine-elicited polyclonal neutralizing antibodies after two doses. mRNA vaccination as a third vaccine dose rescues and broadens neutralization. Importantly, the antiviral drugs remdesivir and molnupiravir retain efficacy against Omicron BA.1. Replication was similar for Omicron and Delta virus isolates in human nasal epithelial cultures. However, in lung cells and gut cells, Omicron demonstrated lower replication. Omicron spike protein was less efficiently cleaved compared with Delta. The differences in replication were mapped to the entry efficiency of the virus on the basis of spike-pseudotyped virus assays. The defect in entry of Omicron pseudotyped virus to specific cell types effectively correlated with higher cellular RNA expression of TMPRSS2, and deletion of TMPRSS2 affected Delta entry to a greater extent than Omicron. Furthermore, drug inhibitors targeting specific entry pathways3 demonstrated that the Omicron spike inefficiently uses the cellular protease TMPRSS2, which promotes cell entry through plasma membrane fusion, with greater dependency on cell entry through the endocytic pathway. Consistent with suboptimal S1/S2 cleavage and inability to use TMPRSS2, syncytium formation by the Omicron spike was substantially impaired compared with the Delta spike. The less efficient spike cleavage of Omicron at S1/S2 is associated with a shift in cellular tropism away from TMPRSS2-expressing cells, with implications for altered pathogenesis

    Basement membrane proteoglycans: Modulators Par Excellence of cancer growth and angiogenesis

    Full text link

    Not Available

    No full text
    Not AvailableAn integrated farming system (IFS) aims to sustain agricultural production, maintain farm incomes, safeguard the environment and respond to climate change impacts. Experiments in a tribal farmer's fields during 2016–2018 with two IFS models (pulse and cotton) were conducted in the Telangana region, India. An on-farm reservoir (OFR) is designed for storing surface runoff based on the area and runoff coefficient determined through a modelling approach. The results demonstrated how supplemental irrigation and water harvesting are the most important and proven technologies for improving crop productivity and the efficient use of water in dryland areas of the semi-arid tropics. The economic analysis indicated that after introduction of OFR technology, farmers' profits were increased under both scenarios of prolonged and short dry spells. According to the results, adoption of the OFR and IFS models not only ensured economic returns but provided regular employment even on less than 1 ha of land, which is usually non-sustainable if monocropping is being practised. The approaches used in this work might be useful for guiding producers’ decisions in optimizing resources and selecting crops based on economic and water use efficiency. © 2020 John Wiley & Sons, Ltd.Not Availabl

    Biomarkers for grain yield stability in rice under drought stress

    No full text
    Crop yield stability requires an attenuation of the reduction of yield losses caused by environmental stresses such as drought. Using a combination of metabolomics and high-throughput colorimetric assays, we analysed central metabolism and oxidative stress status in the flag leaf of 292 indica rice (Oryza sativa) accessions. Plants were grown in the field and were, at the reproductive stage, exposed to either well-watered or drought conditions to identify the metabolic processes associated with drought-induced grain yield loss. Photorespiration, protein degradation, and nitrogen recycling were the main processes involved in the drought-induced leaf metabolic reprogramming. Molecular markers of drought tolerance and sensitivity in terms of grain yield were identified using a multivariate model based on the values of the metabolites and enzyme activities across the population. The model highlights the central role of the ascorbate-glutathione cycle, particularly dehydroascorbate reductase, in minimizing drought-induced grain yield loss. In contrast, malondialdehyde was an accurate biomarker for grain yield loss, suggesting that drought-induced lipid peroxidation is the major constraint under these conditions. These findings highlight new breeding targets for improved rice grain yield stability under drought.</p
    corecore