2,606 research outputs found

    ‘Soft’ phonon modes,structured diffuse scattering and the crystal chemistry of Fe-bearing sphalerites

    Get PDF
    Electron diffraction has been used to carefully investigate the reciprocal lattices of a range of iron-bearing sphalerites looking for evidence of Fe clustering and/or Fe/Zn ordering in the form of either additional satellite reflections or a structured diffuse intensity distribution accompanying the strong Bragg reflections of the underlying sphalerite-type average structure. While a highly structured diffuse intensity distribution in the form of transverse polarized f110g sheets of diffuse intensity has been detected and found to be characteristic of all compositions,it does not appear to arise from Fe clustering and/or Fe/Zn ordering. Rather inherently low frequency,and therefore strongly thermally excited,phonon modes propagating along reciprocal space directions perpendicular to each of the six /110S real space directions of the average structure are suggested to be responsible for these f110g sheets of diffuse intensity. Monte Carlo simulation (for a range of Zn–S,Zn–Zn and S–S interaction strengths) and subsequent Fourier transformation is used to confirm the existence of these low-frequency phonon modes of distortion as well as to show that they are an intrinsic,predictable property of the corner-connected tetrahedral structure of sphalerite. The low-frequency phonon modes involve coupled (Zn,Fe) and S motion in one-dimensional strings along /110S real space directions

    A Molecular Hydrodynamic Theory of Supercooled Liquids and Colloidal Suspensions under Shear

    Full text link
    We extend the conventional mode-coupling theory of supercooled liquids to systems under stationary shear flow. Starting from generalized fluctuating hydrodynamics, a nonlinear equation for the intermediate scattering function is constructed. We evaluate the solution numerically for a model of a two dimensional colloidal suspension and find that the structural relaxation time decreases as γ˙−ν\dot{\gamma}^{-\nu} with an exponent ν≤1\nu \leq 1, where γ˙\dot{\gamma} is the shear rate. The results are in qualitative agreement with recent molecular dynamics simulations. We discuss the physical implications of the results.Comment: 5 pages, 1 figur

    A Co-axial Multi-tube Heat Exchanger Applicable for a Geothermal ORC Power Plant

    Get PDF
    AbstractThe study proposes a Co-axial multi-tube heat exchanger (CMTHE) applicable to geothermal heat extraction. The heat exchanger is integrated with a 50kW geothermal ORC power plant having a working fluid of R-245fa. Two field tests were performed to examine the system response of the ORC system subject to change of CMTHE. In case 1 where the flow rate in the shell-side of CMTHE is maintained, the pressure variation in the shell-side of CMTHE casts minor variations on heat extraction, ORC power generation, and ORC efficiency during the transient. Moreover, the effect of pressure has barely any influence of the final states of heat extraction, ORC power generation, and ORC efficiency. In case 2 where the pressure is preserved in the CMTHE, it is found that a decrease of flow rate in the CMTHE results in degradation of heat extraction, ORC power generation and ORC system efficiency. On the contrary, increasing the flow rate in the CMTHE leads to a rise of heat extraction, ORC power generation and ORC system efficiency. Unlike that in case 1, the effect of flow rate has a detectable effect on the final states of heat extraction, ORC power generation, and ORC efficiency

    Resolving the Azimuthal Ambiguity in Vector Magnetogram Data with the Divergence-Free Condition: Application to Discrete Data

    Full text link
    We investigate how the divergence-free property of magnetic fields can be exploited to resolve the azimuthal ambiguity present in solar vector magnetogram data, by using line-of-sight and horizontal heliographic derivative information as approximated from discrete measurements. Using synthetic data we test several methods that each make different assumptions about how the divergence-free property can be used to resolve the ambiguity. We find that the most robust algorithm involves the minimisation of the absolute value of the divergence summed over the entire field of view. Away from disk centre this method requires the sign and magnitude of the line-of-sight derivatives of all three components of the magnetic field vector.Comment: Solar Physics, in press, 20 pages, 11 figure

    Peptide-mediated growth and dispersion of Au nanoparticles in water via sequence engineering

    Get PDF
    YesThe use of peptides to nucleate, grow, and stabilize nanoparticles in aqueous media via non-covalent interactions offers new possibilities for creating functional, water-dispersed inorganic/organic hybrid materials, particularly for Au nanoparticles. Numerous previous studies have identified peptide sequences that both possess a strong binding affinity for Au surfaces and are capable of supporting nanoparticle growth in water. However, recent studies have shown that not all such peptide sequences can produce stable dispersions of these nanoparticles. Here, via integrated experiments and molecular modeling, we provide new insights into the many factors that influence Au nanoparticle growth and stabilization in aqueous media. We define colloidal stability by the absence of visible precipitation after at least 24 hours post-synthesis. We use binding affinity measurements, nanoparticle synthesis, characterization and stabilization assays, and molecular modeling, to investigate a set of sequences based on two known peptides with strong affinity for Au. This set of biomolecules is designed to probe specific sequence and context effects using both point mutations and global reorganization of the peptides. Our data confirm, for a broader range of sequences, that Au nanoparticle/peptide binding affinity alone is not predictive of peptide-mediated colloidal stability. By comparing nanoparticle stabilization assay outcomes with molecular simulations, we establish a correlation between the colloidal stability of the Au nanoparticles and the degree of conformational diversity in the surface-adsorbed peptides. Our findings suggest future routes to engineer peptide sequences for bio-based growth and dispersion of functional nanoparticles in aqueous media.Air Office of Scientific Research, grant number FA9550-12-1-0226

    The Evolution of Sunspot Magnetic Fields Associated with a Solar Flare

    Full text link
    Solar flares occur due to the sudden release of energy stored in active-region magnetic fields. To date, the pre-cursors to flaring are still not fully understood, although there is evidence that flaring is related to changes in the topology or complexity of an active region's magnetic field. Here, the evolution of the magnetic field in active region NOAA 10953 was examined using Hinode/SOT-SP data, over a period of 12 hours leading up to and after a GOES B1.0 flare. A number of magnetic-field properties and low-order aspects of magnetic-field topology were extracted from two flux regions that exhibited increased Ca II H emission during the flare. Pre-flare increases in vertical field strength, vertical current density, and inclination angle of ~ 8degrees towards the vertical were observed in flux elements surrounding the primary sunspot. The vertical field strength and current density subsequently decreased in the post-flare state, with the inclination becoming more horizontal by ~7degrees. This behaviour of the field vector may provide a physical basis for future flare forecasting efforts.Comment: Accepted for Publication in Solar Physics. 16 pages, 4 figure

    Universal Scaling of Strong-Field Localization in an Integer Quantum Hall Liquid

    Full text link
    We study the Landau level localization and scaling properties of a disordered two-dimensional electron gas in the presence of a strong external magnetic field. The impurities are treated as random distributed scattering centers with parameterized potentials. Using a transfer matrix for a finite-width strip geometry, we calculate the localization length as a function of system size and electron energy. The finite-size localization length is determined by calculating the Lyapunov exponents of the transfer matrix. A detailed finite-size scaling analysis is used to study the critical behavior near the center of the Landau bands. The influence of varying the impurity concentration, the scattering potential range and its nature, and the Landau level index on the scaling behavior and on the critical exponent is systematically investigated. Particular emphasis is put on studying the effects of finite range of the disorder potential and Landau level coupling on the quantum localization behavior. Our numerical results, which are carried out on systems much larger than those studied before, indicate that pure δ\delta-function disorder in the absence of any Landau level coupling gives rise to non-universal localization properties with the critical exponents in the lowest two Landau levels being substantially different. Inclusion of a finite potential range and/or Landau level mixing may be essential in producing universality in the localization.Comment: 28 pages, Latex, 17 figures (available upon request), #phd0

    Hydrodynamics of Spatially Ordered Superfluids

    Full text link
    We derive the hydrodynamic equations for the supersolid and superhexatic phases of a neutral two-dimensional Bose fluid. We find, assuming that the normal part of the fluid is clamped to an underlying substrate, that both phases can sustain third-sound modes and that in the supersolid phase there are additional modes due to the superfluid motion of point defects (vacancies and interstitials).Comment: 24 pages of ReVTeX and 7 uuencoded figures. Submitted for publication in Phys. Rev.

    Fast evaluation of appointment schedules for outpatients in health care

    Get PDF
    We consider the problem of evaluating an appointment schedule for outpatients in a hospital. Given a fixed-length session during which a physician sees K patients, each patient has to be given an appointment time during this session in advance. When a patient arrives on its appointment, the consultations of the previous patients are either already finished or are still going on, which respectively means that the physician has been standing idle or that the patient has to wait, both of which are undesirable. Optimising a schedule according to performance criteria such as patient waiting times, physician idle times, session overtime, etc. usually requires a heuristic search method involving a huge number of repeated schedule evaluations. Hence, the aim of our evaluation approach is to obtain accurate predictions as fast as possible, i.e. at a very low computational cost. This is achieved by (1) using Lindley's recursion to allow for explicit expressions and (2) choosing a discrete-time (slotted) setting to make those expression easy to compute. We assume general, possibly distinct, distributions for the patient's consultation times, which allows us to account for multiple treatment types, as well as patient no-shows. The moments of waiting and idle times are obtained. For each slot, we also calculate the moments of waiting and idle time of an additional patient, should it be appointed to that slot. As we demonstrate, a graphical representation of these quantities can be used to assist a sequential scheduling strategy, as often used in practice

    The nature of slow dynamics in a minimal model of frustration-limited domains

    Full text link
    We present simulation results for the dynamics of a schematic model based on the frustration-limited domain picture of glass-forming liquids. These results are compared with approximate theoretical predictions analogous to those commonly used for supercooled liquid dynamics. Although model relaxation times increase by several orders of magnitude in a non-Arrhenius manner as a microphase separation transition is approached, the slow relaxation is in many ways dissimilar to that of a liquid. In particular, structural relaxation is nearly exponential in time at each wave vector, indicating that the mode coupling effects dominating liquid relaxation are comparatively weak within this model. Relaxation properties of the model are instead well reproduced by the simplest dynamical extension of a static Hartree approximation. This approach is qualitatively accurate even for temperatures at which the mode coupling approximation predicts loss of ergodicity. These results suggest that the thermodynamically disordered phase of such a minimal model poorly caricatures the slow dynamics of a liquid near its glass transition
    • …
    corecore