232 research outputs found

    Effects due to a scalar coupling on the particle-antiparticle production in the Duffin-Kemmer-Petiau theory

    Full text link
    The Duffin-Kemmer-Petiau formalism with vector and scalar potentials is used to point out a few misconceptions diffused in the literature. It is explicitly shown that the scalar coupling makes the DKP formalism not equivalent to the Klein-Gordon formalism or to the Proca formalism, and that the spin-1 sector of the DKP theory looks formally like the spin-0 sector. With proper boundary conditions, scattering of massive bosons in an arbitrary mixed vector-scalar square step potential is explored in a simple way and effects due to the scalar coupling on the particle-antiparticle production and localization of bosons are analyzed in some detail

    Axion Couplings and Effective Cut-Offs in Superstring Compactifications

    Full text link
    We use the linear supermultiplet formalism of supergravity to study axion couplings and chiral anomalies in the context of field-theoretical Lagrangians describing orbifold compactifications beyond the classical approximation. By matching amplitudes computed in the effective low energy theory with the results of string loop calculations we determine the appropriate counterterm in this effective theory that assures modular invariance to all loop order. We use supersymmetry consistency constraints to identify the correct ultra-violet cut-offs for the effective low energy theory. Our results have a simple interpretation in terms of two-loop unification of gauge coupling constants at the string scale.Comment: 25 page

    Quasinormal modes for the SdS black hole : an analytical approximation scheme

    Full text link
    Quasinormal modes for scalar field perturbations of a Schwarzschild-de Sitter (SdS) black hole are investigated. An analytical approximation is proposed for the problem. The quasinormal modes are evaluated for this approximate model in the limit when black hole mass is much smaller than the radius of curvature of the spacetime. The model mirrors some striking features observed in numerical studies of time behaviour of scalar perturbations of the SdS black hole. In particular, it shows the presence of two sets of modes relevant at two different time scales, proportional to the surface gravities of the black hole and cosmological horizons respectively. These quasinormal modes are not complete - another feature observed in numerical studies. Refinements of this model to yield more accurate quantitative agreement with numerical studies are discussed. Further investigations of this model are outlined, which would provide a valuable insight into time behaviour of perturbations in the SdS spacetime.Comment: 12 pages, revtex, refs added and discussion expanded, version to appear in Phys. Rev.

    Inconsistencies of a purported probability current in the Duffin-Kemmer-Petiau theory

    Full text link
    The Duffin-Kemmer-Petiau (DKP) equation with a square step potential is used in a simple way with polymorphic purposes. It proves adequate to refuse a proposed new current that is currently interpreted as a probability current,to show that the Klein paradox does exist in the DKP theory and to revise other minor misconceptions diffused in the literature.Comment: 11 page

    One-loop Correction and the Dilaton Runaway Problem

    Get PDF
    We examine the one-loop vacuum structure of an effective theory of gaugino condensation coupled to the dilaton for string models in which the gauge coupling constant does not receive string threshold corrections. The new ingredients in our treatment are that we take into account the one-loop correction to the dilaton K\"ahler potential and we use a formulation which includes a chiral field HH corresponding to the gaugino bilinear. We find through explicit calculation that supersymmetry in the Yang-Mills sector is broken by gaugino condensation. The dilaton and HH field have masses on the order of the gaugino condensation scale independently of the dilaton VEV. Although the calculation performed here is at best a model of the full gaugino condensation dynamics, the result shows that the one-loop correction to the dilaton K\"ahler potential as well as the detailed dynamics at the gaugino condensation scale may play an important role in solving the dilaton runaway problem.Comment: 19 page

    N=2 Type II- Heterotic duality and Higher derivative F-terms

    Get PDF
    We test the recently conjectured duality between N=2N=2 supersymmetric type II and heterotic string models by analysing a class of higher dimensional interactions in the respective low-energy Lagrangians. These are FF-terms of the form FgW2gF_g W^{2g} where WW is the gravitational superfield. On the type II side these terms are generated at the gg-loop level and in fact are given by topological partition functions of the twisted Calabi-Yau sigma model. We show that on the heterotic side these terms arise at the one-loop level. We study in detail a rank 3 example and show that the corresponding couplings FgF_g satisfy the same holomorphic anomaly equations as in the type II case. Moreover we study the leading singularities of FgF_g's on the heterotic side, near the enhanced symmetry point and show that they are universal poles of order 2g22g{-}2 with coefficients that are given by the Euler number of the moduli space of genus-gg Riemann surfaces. This confirms a recent conjecture that the physics near conifold singularity is governed by c=1c{=}1 string theory at the self-dual point.Comment: 33 pages, latex, no figure

    Quasinormal modes of Schwarzschild black holes in four and higher dimensions

    Full text link
    We make a thorough investigation of the asymptotic quasinormal modes of the four and five-dimensional Schwarzschild black hole for scalar, electromagnetic and gravitational perturbations. Our numerical results give full support to all the analytical predictions by Motl and Neitzke, for the leading term. We also compute the first order corrections analytically, by extending to higher dimensions, previous work of Musiri and Siopsis, and find excellent agreement with the numerical results. For generic spacetime dimension number D the first-order corrections go as 1n(D3)/(D2)\frac{1}{n^{(D-3)/(D-2)}}. This means that there is a more rapid convergence to the asymptotic value for the five dimensional case than for the four dimensional case, as we also show numerically.Comment: 12 pages, 5 figures, RevTeX4. v2. Typos corrected, references adde

    Quasinormal modes for massless topological black holes

    Full text link
    An exact expression for the quasinormal modes of scalar perturbations on a massless topological black hole in four and higher dimensions is presented. The massive scalar field is nonminimally coupled to the curvature, and the horizon geometry is assumed to have a negative constant curvature.Comment: CECS style, 11 pages, no figures. References adde

    Approximate solution of the Duffin-Kemmer-Petiau equation for a vector Yukawa potential with arbitrary total angular momenta

    Full text link
    The usual approximation scheme is used to study the solution of the Duffin-Kemmer-Petiau (DKP) equation for a vector Yukawa potential in the framework of the parametric Nikiforov-Uvarov (NU) method. The approximate energy eigenvalue equation and the corresponding wave function spinor components are calculated for arbitrary total angular momentum in closed form. Further, the approximate energy equation and wave function spinor components are also given for case. A set of parameter values is used to obtain the numerical values for the energy states with various values of quantum levelsComment: 17 pages; Communications in Theoretical Physics (2012). arXiv admin note: substantial text overlap with arXiv:1205.0938, and with arXiv:quant-ph/0410159 by other author

    Fermion Masses in Superstring Theory

    Full text link
    We give a model-independent discussion of fermion masses in four-dimensional heterotic superstring theories. We discuss the tree level contributions and quantum corrections, including one-loop threshold effects and masses generated as a result of non-perturbative supersymmetry breaking. We also point out that superstring models give rise to a generic μ\mu-term in the effective low energy Lagrangian.Comment: 13 pages, latex. Based on talks presented at the Spring Workshop on String Theory, ICTP, Trieste, 11-22 April 1994, and at the Joint U.S.-Polish Workshop on Physics from Planck Scale to Electroweak Scale, Warsaw, Poland, 21-24 September 199
    corecore