14 research outputs found
Static intervortex forces
A point particle approximation to the classical dynamics of well separated
vortices of the abelian Higgs model is developed. A static vortex is
asymptotically identical to a solution of the linearized field theory (a
Klein-Gordon/Proca theory) in the presence of a singular point source at the
vortex centre. It is shown that this source is a composite scalar monopole and
magnetic dipole, and the respective charges are determined numerically for
various values of the coupling constant. The interaction potential of two well
separated vortices is computed by calculating the interaction Lagrangian of two
such point sources in the linear theory. The potential is used to model type II
vortex scattering.Comment: Much shorter (10 pages) published version, new titl
Vortices, Instantons and Branes
The purpose of this paper is to describe a relationship between the moduli
space of vortices and the moduli space of instantons. We study charge k
vortices in U(N) Yang-Mills-Higgs theories and show that the moduli space is
isomorphic to a special Lagrangian submanifold of the moduli space of k
instantons in non-commutative U(N) Yang-Mills theories. This submanifold is the
fixed point set of a U(1) action on the instanton moduli space which rotates
the instantons in a plane. To derive this relationship, we present a D-brane
construction in which the dynamics of vortices is described by the Higgs branch
of a U(k) gauge theory with 4 supercharges which is a truncation of the
familiar ADHM gauge theory. We further describe a moduli space construction for
semi-local vortices, lumps in the CP(N) and Grassmannian sigma-models, and
vortices on the non-commutative plane. We argue that this relationship between
vortices and instantons underlies many of the quantitative similarities shared
by quantum field theories in two and four dimensions.Comment: 32 Pages, 4 Figure