595 research outputs found

    Formulas for ASEP with Two-Sided Bernoulli Initial Condition

    Get PDF
    For the asymmetric simple exclusion process on the integer lattice with two-sided Bernoulli initial condition, we derive exact formulas for the following quantities: (1) the probability that site x is occupied at time t; (2) a correlation function, the probability that site 0 is occupied at time 0 and site x is occupied at time t; (3) the distribution function for the total flux across 0 at time t and its exponential generating function.Comment: 18 page

    t1/3t^{1/3} Superdiffusivity of Finite-Range Asymmetric Exclusion Processes on Z\mathbb Z

    Full text link
    We consider finite-range asymmetric exclusion processes on Z\mathbb Z with non-zero drift. The diffusivity D(t)D(t) is expected to be of O(t1/3){\mathcal O}(t^{1/3}). We prove that D(t)Ct1/3D(t)\ge Ct^{1/3} in the weak (Tauberian) sense that 0eλttD(t)dtCλ7/3\int_0^\infty e^{-\lambda t}tD(t)dt \ge C\lambda^{-7/3} as λ0\lambda\to 0. The proof employs the resolvent method to make a direct comparison with the totally asymmetric simple exclusion process, for which the result is a consequence of the scaling limit for the two-point function recently obtained by Ferrari and Spohn. In the nearest neighbor case, we show further that tD(t)tD(t) is monotone, and hence we can conclude that D(t)Ct1/3(logt)7/3D(t)\ge Ct^{1/3}(\log t)^{-7/3} in the usual sense.Comment: Version 3. Statement of Theorem 3 is correcte

    On the partial connection between random matrices and interacting particle systems

    Full text link
    In the last decade there has been increasing interest in the fields of random matrices, interacting particle systems, stochastic growth models, and the connections between these areas. For instance, several objects appearing in the limit of large matrices arise also in the long time limit for interacting particles and growth models. Examples of these are the famous Tracy-Widom distribution functions and the Airy_2 process. The link is however sometimes fragile. For example, the connection between the eigenvalues in the Gaussian Orthogonal Ensembles (GOE) and growth on a flat substrate is restricted to one-point distribution, and the connection breaks down if we consider the joint distributions. In this paper we first discuss known relations between random matrices and the asymmetric exclusion process (and a 2+1 dimensional extension). Then, we show that the correlation functions of the eigenvalues of the matrix minors for beta=2 Dyson's Brownian motion have, when restricted to increasing times and decreasing matrix dimensions, the same correlation kernel as in the 2+1 dimensional interacting particle system under diffusion scaling limit. Finally, we analyze the analogous question for a diffusion on (complex) sample covariance matrices.Comment: 31 pages, LaTeX; Added a section concerning the Markov property on space-like path

    On the Two Species Asymmetric Exclusion Process with Semi-Permeable Boundaries

    Full text link
    We investigate the structure of the nonequilibrium stationary state (NESS) of a system of first and second class particles, as well as vacancies (holes), on L sites of a one-dimensional lattice in contact with first class particle reservoirs at the boundary sites; these particles can enter at site 1, when it is vacant, with rate alpha, and exit from site L with rate beta. Second class particles can neither enter nor leave the system, so the boundaries are semi-permeable. The internal dynamics are described by the usual totally asymmetric exclusion process (TASEP) with second class particles. An exact solution of the NESS was found by Arita. Here we describe two consequences of the fact that the flux of second class particles is zero. First, there exist (pinned and unpinned) fat shocks which determine the general structure of the phase diagram and of the local measures; the latter describe the microscopic structure of the system at different macroscopic points (in the limit L going to infinity in terms of superpositions of extremal measures of the infinite system. Second, the distribution of second class particles is given by an equilibrium ensemble in fixed volume, or equivalently but more simply by a pressure ensemble, in which the pair potential between neighboring particles grows logarithmically with distance. We also point out an unexpected feature in the microscopic structure of the NESS for finite L: if there are n second class particles in the system then the distribution of first class particles (respectively holes) on the first (respectively last) n sites is exchangeable.Comment: 28 pages, 4 figures. Changed title and introduction for clarity, added reference

    Fluctuation properties of the TASEP with periodic initial configuration

    Get PDF
    We consider the joint distributions of particle positions for the continuous time totally asymmetric simple exclusion process (TASEP). They are expressed as Fredholm determinants with a kernel defining a signed determinantal point process. We then consider certain periodic initial conditions and determine the kernel in the scaling limit. This result has been announced first in a letter by one of us and here we provide a self-contained derivation. Connections to last passage directed percolation and random matrices are also briefly discussed.Comment: 33 pages, 4 figure, LaTeX; We added several references to the general framework and techniques use

    Determinant representation for some transition probabilities in the TASEP with second class particles

    Full text link
    We study the transition probabilities for the totally asymmetric simple exclusion process (TASEP) on the infinite integer lattice with a finite, but arbitrary number of first and second class particles. Using the Bethe ansatz we present an explicit expression of these quantities in terms of the Bethe wave function. In a next step it is proved rigorously that this expression can be written in a compact determinantal form for the case where the order of the first and second class particles does not change in time. An independent geometrical approach provides insight into these results and enables us to generalize the determinantal solution to the multi-class TASEP.Comment: Minor revision; journal reference adde

    On the asymmetric simple exclusion process with multiple species

    Full text link
    In the asymmetric simple exclusion process on the integers each particle waits exponential time, then with probability p it moves one step to the right if the site is unoccupied, otherwise it stays put; and with probability q=1-p it moves one step to the left if the site is unoccupied, otherwise it stays put. In previous work the authors, using the Bethe Ansatz, found for N-particle ASEP a formula --- a sum of multiple integrals --- for the probability that a system is in a particular configuration at time t given an initial configuration. The present work extends this to the case where particles are of different species, with particles of a higher species having priority over those of a lower species. Here the integrands in the multiple integrals are defined by a system of relations whose consistency requires verifying that the Yang-Baxter equations are satisfied.Comment: 17 pages. Version 3 corrects misprints, clarifies some points, and adds reference

    Zitterbewegung in External Magnetic Field: Classic versus Quantum Approach

    Full text link
    We investigate variations of the Zitterbewegung frequency of electron due to an external static and uniform magnetic field employing the expectation value quantum approach, and compare our results with the classical model of spinning particles. We demonstrate that these two so far compatible approaches are not in agreement in the presence of an external uniform static magnetic field, in which the classical approach breaks the usual symmetry of free particles and antiparticles states, i.e. it leads to CP violation. Hence, regarding the Zitterbewegung frequency of electron, the classical approach in the presence of an external magnetic field is unlikely to correctly describe the spin of electron, while the quantum approach does, as expected. We also show that the results obtained via the expectation value are in close agreement with the quantum approach of the Heisenberg picture derived in the literature. However, the method we use is capable of being compared with the classical approach regarding the spin aspects. The classical interpretation of spin produced by the altered Zitterbewegung frequency, in the presence of an external magnetic field, are discussed.Comment: 16 pages, no figure

    X-boson cumulant approach to the periodic Anderson model

    Full text link
    The Periodic Anderson Model (PAM) can be studied in the infinite U limit by employing the Hubbard X operators to project out the unwanted states. We have already studied this problem employing the cumulant expansion with the hybridization as perturbation, but the probability conservation of the local states (completeness) is not usually satisfied when partial expansions like the Chain Approximation (CHA) are employed. Here we treat the problem by a technique inspired in the mean field approximation of Coleman's slave-bosons method, and we obtain a description that avoids the unwanted phase transition that appears in the mean-field slave-boson method both when the chemical potential is greater than the localized level Ef at low temperatures (T) and for all parameters at intermediate T.Comment: Submited to Physical Review B 14 pages, 17 eps figures inserted in the tex

    Thermodynamic Limit for the Invariant Measures in Supercritical Zero Range Processes

    Full text link
    We prove a strong form of the equivalence of ensembles for the invariant measures of zero range processes conditioned to a supercritical density of particles. It is known that in this case there is a single site that accomodates a macroscopically large number of the particles in the system. We show that in the thermodynamic limit the rest of the sites have joint distribution equal to the grand canonical measure at the critical density. This improves the result of Gro\ss kinsky, Sch\"{u}tz and Spohn, where convergence is obtained for the finite dimensional marginals. We obtain as corollaries limit theorems for the order statistics of the components and for the fluctuations of the bulk
    corecore