1,865 research outputs found
Quantitative genetics of learning ability and resistance to stress in Drosophila melanogaster.
Even though laboratory evolution experiments have demonstrated genetic variation for learning ability, we know little about the underlying genetic architecture and genetic relationships with other ecologically relevant traits. With a full diallel cross among twelve inbred lines of Drosophila melanogaster originating from a natural population (0.75 < F < 0.93), we investigated the genetic architecture of olfactory learning ability and compared it to that for another behavioral trait (unconditional preference for odors), as well as three traits quantifying the ability to deal with environmental challenges: egg-to-adult survival and developmental rate on a low-quality food, and resistance to a bacterial pathogen. Substantial additive genetic variation was detected for each trait, highlighting their potential to evolve. Genetic effects contributed more than nongenetic parental effects to variation in traits measured at the adult stage: learning, odorant perception, and resistance to infection. In contrast, the two traits quantifying larval tolerance to low-quality food were more strongly affected by parental effects. We found no evidence for genetic correlations between traits, suggesting that these traits could evolve at least to some degree independently of one another. Finally, inbreeding adversely affected all traits
Quantitative linear and nonlinear Resonance Inspection Techniques and Analysis for material characterization: Application to concrete thermal damage.
International audienceDeveloped in the late 80's, Nonlinear Resonant Ultrasound Spectroscopy (NRUS) has been widely employed in the field of material characterization. Most of the studies assume the measured amplitude to be proportional to the strain amplitude which drives nonlinear phenomena. In 1D resonant bar experiments, the configuration for which NRUS was initially developed, this assumption holds. However, it is not true for samples of general shape which exhibit several resonance mode shapes. This paper proposes a methodology based on linear resonant ultrasound spectroscopy, numerical simulations and nonlinear resonant ultrasound spectroscopy to provide quantitative values of nonlinear elastic moduli taking into account the 3D nature of the samples. In the context of license renewal in the field of nuclear energy, this study aims at providing some quantitative information related to the degree of micro-cracking of concrete and cement based materials in the presence of thermal damage. The resonance based method is validated as regard with concrete microstructure evolution during thermal exposure
Resolution in Linguistic Propositional Logic based on Linear Symmetrical Hedge Algebra
The paper introduces a propositional linguistic logic that serves as the
basis for automated uncertain reasoning with linguistic information. First, we
build a linguistic logic system with truth value domain based on a linear
symmetrical hedge algebra. Then, we consider G\"{o}del's t-norm and t-conorm to
define the logical connectives for our logic. Next, we present a resolution
inference rule, in which two clauses having contradictory linguistic truth
values can be resolved. We also give the concept of reliability in order to
capture the approximative nature of the resolution inference rule. Finally, we
propose a resolution procedure with the maximal reliability.Comment: KSE 2013 conferenc
Dynamic Compaction of Biomaterial Powders
Dynamic compaction which requires no external heating for consolidation was used to compact hydroxyapatite. Static precompaction of 3 MPa and dynamic compaction using a projectile velocity of 50 m/s resulted in compacts having a compaction degree of 65% and a tensile strength of 12.4 ± 2.7 MPa This strength was very close to that obtained with sintered compacts one and seemed to indicate that some interparticle boundaries had been created during dynamic compaction
Using the Wigner-Ibach Surmise to Analyze Terrace-Width Distributions: History, User's Guide, and Advances
A history is given of the applications of the simple expression generalized
from the surmise by Wigner and also by Ibach to extract the strength of the
interaction between steps on a vicinal surface, via the terrace width
distribution (TWD). A concise guide for use with experiments and a summary of
some recent extensions are provided.Comment: 11 pages, 4 figures, reformatted (with revtex) version of refereed
paper for special issue of Applied Physics A entitled "From Surface Science
to Device Physics", in honor of the retirements of Prof. H. Ibach and Prof.
H. L\"ut
A recent rebuilding of most spirals ?
Re-examination of the properties of distant galaxies leads to the evidence
that most present-day spirals have built up half of their stellar masses during
the last 8 Gyr, mostly during several intense phases of star formation during
which they took the appearance of luminous infrared galaxies (LIRGs). Distant
galaxy morphologies encompass all of the expected stages of galaxy merging,
central core formation and disk growth, while their cores are much bluer than
those of present-day bulges. We have tested a spiral rebuilding scenario, for
which 75+/-25% of spirals have experienced their last major merger event less
than 8 Gyr ago. It accounts for the simultaneous decreases, during that period,
of the cosmic star formation density, of the merger rate, of the number
densities of LIRGs and of compact galaxies, while the densities of ellipticals
and large spirals are essentially unaffected.Comment: (1) GEPI, Obs. Meudon, France ;(2)Max-Planck Institut fuer
Astronomie, Germany (3) National Astronomical Observatories, CAS, China. Five
pages, 1 figure. To be published in "Starbursts: From 30 Doradus to Lyman
Break Galaxies", held in Cambridge, ed. R. de Grijs & R. M. Gonzalez Delgado
(Dordrecht: Kluwer
Erbium environment in glass-ceramics investigated by atom probe tomography
Glass-ceramics (considered here as a glassy host containing crystalline or amorphous nanoparticles) are of interest for luminescent properties as they can combine the sturdiness and low cost of a matrix host with particular spectroscopic behavior that would not appear in this host [1]. Ideally, nanoparticles would fully encapsulate luminescent ions to produce engineered spectroscopic properties. This approach is particularly promising for optical fibers. Indeed, silica is the most common glass used to prepare such waveguides. However, it is necessary to overcome some of its characteristics (high phonon energy, low luminesent ions solubility, ...) which may be detrimental to luminescent properties. As silicate systems have a large phase immiscibility domain when they contain divalent metal oxides (such as Mg), one can take advantage of thermal treatments inherent to the MCVD (Modified Chemical Vapor Deposition) process to obtain nanoparticles through phase separation [2]. By modifying Mg concentration, we have observed modifications of luminescent properties of Er3+ ions [3]. However the question arises of the partition of rare-earth ions in nanoparticles. Qualitative partition of erbium ions in nanoparticles was reported thanks to Secondary Ion Mass Spectrometry analyses [4]. However, the spatial resolution is about the particle size. To go further, we take advantages of recent developments in Atom Probe Tomography (APT) which allowed the extension of such studies to glass-ceramics [5]. Partition of erbium ions is clearly observed in nanoparticles smaller than 10 nm (Figure 1). During this presentation, we will discuss this partition and the most probable nearest neighbors and correlate these results with luminescent properties
Chemical telemetry of OH observed to measure interstellar magnetic fields
We present models for the chemistry in gas moving towards the ionization
front of an HII region. When it is far from the ionization front, the gas is
highly depleted of elements more massive than helium. However, as it approaches
the ionization front, ices are destroyed and species formed on the grain
surfaces are injected into the gas phase. Photodissociation removes gas phase
molecular species as the gas flows towards the ionization front. We identify
models for which the OH column densities are comparable to those measured in
observations undertaken to study the magnetic fields in star forming regions
and give results for the column densities of other species that should be
abundant if the observed OH arises through a combination of the liberation of
H2O from surfaces and photodissociation. They include CH3OH, H2CO, and H2S.
Observations of these other species may help establish the nature of the OH
spatial distribution in the clouds, which is important for the interpretation
of the magnetic field results.Comment: 11 pages, 2 figures, accepted by Astrophysics and Space Scienc
Variation de la composition de nanoparticules de 1-10 nm obtenues par séparation de phase dans un verre de silice
National audienceLes verres contenant des nanoparticules ont de nombreuses applications industrielles, notamment grâce à leurs excellentes propriétés thermo-mécaniques [1]. Ils présentent aussi un intérêt pour les propriétés optiques. En effet, l'encapsulation d'ions luminescents (ions de terre rare par exemple) dans des nanoparticules entraînent de nouvelles propriétés de luminescence qui n'existeraient pas dans le verre hôte (bande d'émission élargie, efficacité quantique augmentée, etc) [2]. La préparation de tels verres repose sur des mécanismes de nucléation, croissance et de démixtion dont les premières étapes sont encore assez mal connues. Mais l'avènement de nouvelles techniques de caractérisation à l'échelle nanométrique permet d'améliorer notre compréhension de ces phénomènes. Par exemple, une évolution structurelle des nanoparticules à travers des phases cristallines métastables [3] ou une transformation d'un nucléus amorphe vers une nanoparticule cristalline [4] ont été observées. Des changements de composition ont aussi été rapportés pour des particules de taille 1-10 nm dans des alliages [5] et dans des métaux [6]. Dans cette présentation, nous nous intéressons à la composition de nanoparticules amorphes obtenues par séparation de phase dans un verre de silice. De telles études ont été rendues possibles grâce au développement récent de l'APT (Atom Probe Tomography) pour l'analyse des verres [7]. Nous étudions une fibre optique à base de silice préparée par le procédé MCVD (Modified Chemical Vapor Deposition). Les nanoparticules sont obtenues en incorporant du magnésium qui déclenche une séparation de phase grâce aux traitements thermiques inhérents au procédé MCVD [8]. La composition des nanoparticules dans le verre de silice dopée avec Mg, P, Ge et Er est étudiée dans la gamme 1-10 nm. Nous montrons la partition de Mg, P et Er dans ces nanoparticules ainsi qu'une modification de la composition en fonction de la taille des particules
- …