936 research outputs found

    The mapping method as a toolbox to analyze, design, and optimize micromixers

    Get PDF
    The mapping method is employed as an efficient toolbox to analyze, design, and optimize micromixers. A new and simplified formulation of this technique is introduced here and applied to three micromixers: the staggered herringbone micromixer (SHM), the barrier-embedded micromixer (BEM), and the three-dimensional serpentine channel (3D-SC). The mapping method computes a distribution matrix that maps the color concentration distribution from inlet to outlet of a micromixer to characterize mixing in a quantitative way. Once the necessary distribution matrices are obtained, computations are fast and numerous layouts of the mixer are easily evaluated, resulting in an optimal design. This approach is demonstrated using the SHM and the BEM as typical examples. Mixing analysis in the 3D-SC illustrates that also complex flows, for example in the presence of back-flows, can be efficiently dealt with by using the new formulation of the mapping metho

    Loading a vapor cell magneto-optic trap using light-induced atom desorption

    Get PDF
    Low intensity white light was used to increase the loading rate of 87^{87}Rb atoms into a vapor cell magneto-optic trap by inducing non-thermal desorption of Rb atoms from the stainless steel walls of the vapor cell. An increased Rb partial pressure reached a new equilibrium value in less than 10 seconds after switching on the broadband light source. After the source was turned off, the partial pressure returned to its previous value in 1/e1/e times as short as 10 seconds.Comment: 7 pages, 6 figure

    A low-voltage retarding-field Mott polarimeter for photocathode characterization

    Full text link
    Nuclear physics experiments at Thomas Jefferson National Accelerator Facility's CEBAF rely on high polarization electron beams. We describe a recently commissioned system for prequalifying and studying photocathodes for CEBAF with a load-locked, low-voltage polarized electron source coupled to a compact retarding-field Mott polarimeter. The polarimeter uses simplified electrode structures and operates from 5 to 30 kV. The effective Sherman function for this device has been calibrated by comparison with the CEBAF 5 MeV Mott polarimeter. For elastic scattering from a thick gold target at 20 keV, the effective Sherman function is 0.201(5). Its maximum efficiency at 20 keV, defined as the detected count rate divided by the incident particle current, is 5.4(2) x 10-4, yielding a figure-of-merit, or analyzing power squared times efficiency, of 1.0(1) x 10-5. The operating parameters of this new polarimeter design are compared to previously published data for other compact Mott polarimeters of the retarding-field type.Comment: 9 figure

    Testing quark mass matrices with right-handed mixings

    Get PDF
    In the standard model, several forms of quark mass matrices which correspond to the choice of weak bases lead to the same left-handed mixings VL=VCKMV_L=V_{CKM}, while the right-handed mixings VRV_R are not observable quantities. Instead, in a left-right extension of the standard model, such forms are ansatze and give different right-handed mixings which are now observable quantities. We partially select the reliable forms of quark mass matrices by means of constraints on right-handed mixings in some left-right models, in particular on VcbRV^R_{cb}. Hermitian matrices are easily excluded.Comment: 12 pages RevTex, no figures. Minor corrections. Comment on SO(10) changed and one reference adde

    Spin and orbital ordering in double-layered manganites

    Full text link
    We study theoretically the phase diagram of the double-layered perovskite manganites taking into account the orbital degeneracy, the strong Coulombic repulsion, and the coupling with the lattice deformation. Observed spin structural changes as the increased doping are explained in terms of the orbital ordering and the bond-length dependence of the hopping integral along cc-axis. Temperature dependence of the neutron diffraction peak corresponding to the canting structure is also explained. Comparison with the 3D cubic system is made.Comment: 7 figure

    Lyapunov exponents for products of complex Gaussian random matrices

    Full text link
    The exact value of the Lyapunov exponents for the random matrix product PN=ANAN1...A1P_N = A_N A_{N-1}...A_1 with each Ai=Σ1/2GicA_i = \Sigma^{1/2} G_i^{\rm c}, where Σ\Sigma is a fixed d×dd \times d positive definite matrix and GicG_i^{\rm c} a d×dd \times d complex Gaussian matrix with entries standard complex normals, are calculated. Also obtained is an exact expression for the sum of the Lyapunov exponents in both the complex and real cases, and the Lyapunov exponents for diffusing complex matrices.Comment: 15 page

    Constraints on the pMSSM from LAT Observations of Dwarf Spheroidal Galaxies

    Full text link
    We examine the ability for the Large Area Telescope (LAT) to constrain Minimal Supersymmetric Standard Model (MSSM) dark matter through a combined analysis of Milky Way dwarf spheroidal galaxies. We examine the Lightest Supersymmetric Particles (LSPs) for a set of ~71k experimentally valid supersymmetric models derived from the phenomenological-MSSM (pMSSM). We find that none of these models can be excluded at 95% confidence by the current analysis; nevertheless, many lie within the predicted reach of future LAT analyses. With two years of data, we find that the LAT is currently most sensitive to light LSPs (m_LSP < 50 GeV) annihilating into tau-pairs and heavier LSPs annihilating into b-bbar. Additionally, we find that future LAT analyses will be able to probe some LSPs that form a sub-dominant component of dark matter. We directly compare the LAT results to direct detection experiments and show the complementarity of these search methods.Comment: 24 pages, 9 figures, submitted to JCA

    Wide Angle Polarization Analysis with Neutron Spin Filters

    Get PDF
    AbstractWe report substantial improvements in a compact wide angle neutron spin filter system that was recently employed on the Multi- Axis Crystal Spectrometer at the Center for Neutron Research at the U.S. National Institute of Standards and Technology. The apparatus consists of a cylindrical 3He polarizer cell and wide-angle 3He analyzer cells, a vertical solenoid to provide a uniform magnetic field, and a shielded radio-frequency solenoid for the polarizer cell. Nuclear magnetic resonance is employed to reverse the polarization in the polarizer cell and monitor the 3He polarization in all cells. The first experiment using this apparatus was carried out with cylindrical analyzer cells with limited angular coverage due to low polarizations in fused quartz cells. We present results for aluminosilicate glass analyzer cells that cover 110 ∘ and have long relaxation times (100h to 400h). Using two 100W diode bars spectrally narrowed with chirped volume Bragg gratings, we have obtained 65% - 80% 3He polarization in these cells. The 3He polarization has been measured by neutron transmission and electron paramagnetic resonance. Additional progress includes an improved holding field solenoid and decreased spin-flip losses

    Constraints on R-parity violating supersymmetry from leptonic and semileptonic tau, B_d and B_s decays

    Full text link
    We put constraints on several products of R-parity violating lambda lambda' and lambda' lambda' type couplings from leptonic and semileptonic tau, B_d and B_s decays. Most of them are one to two orders of magnitude better than the existing bounds, and almost free from theoretical uncertainties. A significant improvement of these bounds can be made in high luminosity tau-charm or B factories.Comment: 14 pages, latex. A few references added, two typos corrected. Version to be published in Physical Review
    corecore