18 research outputs found

    Rapid and predictable evolution of admixed populations between two Drosophila species pairs

    Get PDF
    The consequences of hybridization are varied, ranging from the origin of new lineages, introgression of some genes between species, to the extinction of one of the hybridizing species. We generated replicate admixed populations between two pairs of sister species of Drosophila: D. simulans and D. mauritiana; and D. yakuba and D. santomea. Each pair consisted of a continental species and an island endemic. The admixed populations were maintained by random mating in discrete generations for over 20 generations. We assessed morphological, behavioral, and fitness-related traits from each replicate population periodically, and sequenced genomic DNA from the populations at generation 20. For both pairs of species, species-specific traits and their genomes regressed to those of the continental species. A few alleles from the island species persisted, but they tended to be proportionally rare among all sites in the genome and were rarely fixed within the populations. This paucity of alleles from the island species was particularly pronounced on the X-chromosome. These results indicate that nearly all foreign genes were quickly eliminated after hybridization and that selection against the minor species genome might be similar across experimental replicates

    The Drosophila melanogaster Genetic Reference Panel

    Get PDF
    A major challenge of biology is understanding the relationship between molecular genetic variation and variation in quantitative traits, including fitness. This relationship determines our ability to predict phenotypes from genotypes and to understand how evolutionary forces shape variation within and between species. Previous efforts to dissect the genotype-phenotype map were based on incomplete genotypic information. Here, we describe the Drosophila melanogaster Genetic Reference Panel (DGRP), a community resource for analysis of population genomics and quantitative traits. The DGRP consists of fully sequenced inbred lines derived from a natural population. Population genomic analyses reveal reduced polymorphism in centromeric autosomal regions and the X chromosome, evidence for positive and negative selection, and rapid evolution of the X chromosome. Many variants in novel genes, most at low frequency, are associated with quantitative traits and explain a large fraction of the phenotypic variance. The DGRP facilitates genotype-phenotype mapping using the power of Drosophila genetics

    Does reproductive isolation evolve faster in larger populations via sexually antagonistic coevolution?

    No full text
    Sexual conflict over reproductive investment can lead to sexually antagonistic coevolution and reproductive isolation. It has been suggested that, unlike most models of allopatric speciation, the evolution of reproductive isolation through sexually antagonistic coevolution will occur faster in large populations as these harbour greater levels of standing genetic variation, receive larger numbers of mutations and experience more intense sexual selection. We tested this in bruchid beetle populations (Callosobruchus maculatus) by manipulating population size and standing genetic variability in replicated lines derived from founders that had been released from sexual conflict for 90 generations. We found that after 19 generations of reintroduced sexual conflict, none of our treatments had evolved significant overall reproductive isolation among replicate lines. However, as predicted, measures of reproductive isolation tended to be greater among larger populations. We discuss our methodology, arguing that reproductive isolation is best examined by performing a matrix of allopatric and sympatric crosses whereas measurement of divergence requires crosses with a tester line

    Drosophila bristles and the nature of quantitative genetic variation

    No full text
    Numbers of Drosophila sensory bristles present an ideal model system to elucidate the genetic basis of variation for quantitative traits. Here, we review recent evidence that the genetic architecture of variation for bristle numbers is surprisingly complex. A substantial fraction of the Drosophila genome affects bristle number, indicating pervasive pleiotropy of genes that affect quantitative traits. Further, a large number of loci, often with sex- and environment-specific effects that are also conditional on background genotype, affect natural variation in bristle number. Despite this complexity, an understanding of the molecular basis of natural variation in bristle number is emerging from linkage disequilibrium mapping studies of individual candidate genes that affect the development of sensory bristles. We show that there is naturally segregating genetic variance for environmental plasticity of abdominal and sternopleural bristle number. For abdominal bristle number this variance can be attributed in part to an abnormal abdomen-like phenotype that resembles the phenotype of mutants defective in catecholamine biosynthesis. Dopa decarboxylase (Ddc) encodes the enzyme that catalyses the final step in the synthesis of dopamine, a major Drosophila catecholamine and neurotransmitter. We found that molecular polymorphisms at Ddc are indeed associated with variation in environmental plasticity of abdominal bristle number

    Otimização do tamanho de população sob acasalamento seletivo na seleção assistida por marcadores moleculares Optimization of the population size under selective mating in the selection assisted by molecular markers

    No full text
    Foram simulados diferentes tamanhos populacionais para estimar os valores fenotípicos na seleção assistida por marcadores para características quantitativas com valores de herdabilidade de 0,10; 0,40 e 0,70. Procedeu-se à análise de agrupamento com os desempenhos fenotípicos, cuja finalidade foi obter estruturas de classificação entre as amostras visando à otimização na detecção de QTL. O sistema de simulação genética (Genesys) foi utilizado para a simulação de três genomas (cada qual com uma única característica cuja distinção estava no valor da herdabilidade) e das populações base e inicial. Cada população inicial foi submetida à seleção assistida por marcadores por 20 gerações consecutivas, em que os genitores selecionados acasalavam-se seletivamente, entre os melhores e os piores. Essa estratégia seletiva de acasalamento mostrou-se eficiente na redução do número de indivíduos requeridos em uma população para mapeamento de QTL. À medida que aumenta a magnitude da herdabilidade, menores tamanhos populacionais são exigidos para manter similaridades nos incrementos fenotípicos. O emprego de amostras com 300, 250 e 200 ou mais indivíduos para as herdabilidades de 0,10; 0,40 e 0,70, respectivamente, é desnecessário, tendo em vista as inferências equivalentes indicadas pelos métodos de otimização de Tocher e da ligação completa, oriundas do sistema de análises estatísticas e genéticas (SAEG).<br>Different population sizes were simulated to estimate the phenotypic values in the selection assisted by markers for quantitative characteristics with heritability values of 0.10, 0.40 and 0.70. Cluster analysis with the phenotypic performance was carried out aiming at obtaining classification structure among the samples to optimize QTL detection. The genetic simulation system (Genesys) was used for the simulation of three genomes (each one consisting of a single characteristic whose distinction was the value of heritability), and the base and original populations. Each initial population was submitted to selection assisted by markers for 20 consecutive generations, in which selected parents mated selectively among the best and the worst ones. This selective strategy of mating proved itself to be efficient in reducing the number of individuals required in a population for QTL mapping. As the magnitude of heritability increases, lower population sizes are required to maintain similarities in phenotypic increments. The use of samples with 300, 250 and 200 individuals or more for heritabilities of 0.10, 0.40 and 0.70, respectively, is unnecessary, because of the equivalent inferences indicated by Tocher optmization and complete linkage methods from the system of statistical and genetic analysis (SAEG)
    corecore