24 research outputs found

    Antibiotic stability over six weeks in aqueous solution at body temperature with and without heat treatment that mimics the curing of bone cement.

    Get PDF
    Thermal stability is a key property in determining the suitability of an antibiotic agent for local application in the treatment of orthopaedic infections. Despite the fact that long-term therapy is a stated goal of novel local delivery carriers, data describing thermal stability over a long period are scarce, and studies that avoid interference from specific carrier materials are absent from the orthopaedic literature. In this study, a total of 38 frequently used antibiotic agents were maintained at 37°C in saline solution, and degradation and antibacterial activity assessed over six weeks. The impact of an initial supplementary heat exposure mimicking exothermically curing bone cement was also tested as this material is commonly used as a local delivery vehicle. Antibiotic degradation was assessed by liquid chromatography coupled to mass spectrometry, or by immunoassays, as appropriate. Antibacterial activity over time was determined by the Kirby-Bauer disk diffusion assay. The heat exposure mimicking curing bone cement had minimal effect on stability for most antibiotics, except for gentamicin which experienced approximately 25% degradation as measured by immunoassay. Beta-lactam antibiotics were found to degrade quite rapidly at 37°C regardless of whether there was an initial heat exposure. Excellent long-term stability was observed for aminoglycosides, glycopeptides, tetracyclines and quinolones under both conditions. This study provides a valuable dataset for orthopaedic surgeons considering local application of antibiotics, and for material scientists looking to develop next-generation controlled or extended-release antibiotic carriers.Cite this article: E. Samara, T. F. Moriarty, L. A. Decosterd, R. G. Richards, E. Gautier, P. Wahl. Antibiotic stability over six weeks in aqueous solution at body temperature with and without heat treatment that mimics the curing of bone cement. Bone Joint J 2017;6:296-306. DOI: 10.1302/2046-3758.65.BJR-2017-0276.R1

    Infection after fracture fixation: Current surgical and microbiological concepts

    Get PDF
    One of the most challenging complications in trauma surgery is infection after fracture fixation (IAFF). IAFF may result in permanent functional loss or even amputation of the affected limb in patients who may otherwise be expected to achieve complete, uneventful healing. Over the past decades, the problem of implant related bone infections has garnered increasing attention both in the clinical as well as preclinical arenas; however this has primarily been focused upon prosthetic joint infection (PJI), rather than on IAFF. Although IAFF shares many similarities with PJI, there are numerous critical differences in many facets including prevention, diagnosis and treatment. Admittedly, extrapolating data from PJI research to IAFF has been of value to the trauma surgeon, but we should also be aware of the unique challenges posed by IAFF that may not be accounted for in the PJI literature.This review summarizes the clinical approaches towards the diagnosis and treatment of IAFF with an emphasis on the unique aspects of fracture care that distinguish IAFF from PJI. Finally, recent developments in anti-infective technologies that may be particularly suitable or applicable for trauma patients in the future will be briefly discussed

    Evidence-Based Recommendations for Local Antimicrobial Strategies and Dead Space Management in Fracture-Related Infection

    Get PDF
    Summary:Fracture-related infection (FRI) remains a challenging complication that imposes a heavy burden on orthopaedic trauma patients. The surgical management eradicates the local infectious focus and if necessary facilitates bone healing. Treatment success is associated with debridement of all dead and poorly vascularized tissue. However, debridement is often associated with the formation of a dead space, which provides an ideal environment for bacteria and is a potential site for recurrent infection. Dead space management is therefore of critical importance. For this reason, the use of locally delivered antimicrobials has gained attention not only for local antimicrobial activity but also for dead space management. Local antimicrobial therapy has been widely studied in periprosthetic joint infection, without addressing the specific problems of FRI. Furthermore, the literature presents a wide array of methods and guidelines with respect to the use of local antimicrobials. The present review describes the scientific evidence related to dead space management with a focus on the currently available local antimicrobial strategies in the management of FRI.Level of Evidence:Therapeutic Level V. See Instructions for Authors for a complete description of levels of evidence

    Fracture-Related Infection: a consensus on definition from an international expert group

    Get PDF
    Fracture-related infection (FRI) is a common and serious complication in trauma surgery. Accurately estimating the impact of this complication has been hampered by the lack of a clear definition. The absence of a working definition of FRI renders existing studies difficult to evaluate or compare. In order to address this issue, an expert group comprised of a number of scientific and medical organizations has been convened, with the support of the AO Foundation, in order to develop a consensus definition. The process that led to this proposed definition started with a systematic literature review, which revealed that the majority of randomized controlled trials in fracture care do not use a standardized definition of FRI. In response to this conclusion, an international survey on the need for and key components of a definition of FRI was distributed amongst all registered AOTrauma users. Approximately 90% of the more than 2,000 surgeons who responded suggested that a definition of FRI is required. As a final step, a consensus meeting was held with an expert panel. The outcome of this process led to a consensus definition of FRI. Two levels of certainty around diagnostic features were defined. Criteria could be confirmatory (infection definitely present) or suggestive. Four confirmatory criteria were defined: Fistula, sinus or wound breakdown; Purulent drainage from the wound or presence of pus during surgery; Phenotypically indistinguishable pathogens identified by culture from at least two separate deep tissue/implant specimens; Presence of microorganisms in deep tissue taken during an operative intervention, as confirmed by histopathological examination. Furthermore, a list of suggestive criteria was defined. These require further investigations in order to look for confirmatory criteria. In the current paper, an overview is provided of the proposed definition and a rationale for each component and decision. The intention of establishing this definition of FRI was to offer clinicians the opportunity to standardize clinical reports and improve the quality of published literature. It is important to note that the proposed definition was not designed to guide treatment of FRI and should be validated by prospective data collection in the future

    Rapid colorimetric assay for antimicrobial susceptibility testing of Pseudomonas aeruginosa

    No full text
    A colorimetric assay based on the reduction of a tetrazolium salt {2,3-bis[2-methyloxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide (XTT)} for rapidly determining the susceptibility of Pseudomonas aeruginosa isolates to bactericidal antibiotics is described. There was excellent agreement between the tobramycin and ofloxacin MICs determined after 5 h using the XTT assay and after 18 h using conventional methods. The data suggests that an XTT-based assay could provide a useful method for rapidly determining the susceptibility of P. aeruginosa to bactericidal antibiotics

    Antimicrobial delivery systems for local infection prophylaxis in orthopedic- and trauma surgery

    Get PDF
    Infectious complications occur in a minor but significant portion of the patients undergoing joint replacement surgery or fracture fixation, particularly those with severe open fractures, those undergoing revision arthroplasty or those at elevated risk because of poor health status. Once established, infections are difficult to eradicate, especially in the case of bacterial biofilm formation on implanted hardware. Local antibiotic carriers offer the prospect of controlled delivery of antibiotics directly in target tissues and implant, without inducing toxicity in non-target organs. Polymeric carriers have been developed to optimize the release and targeting of antibiotics. Passive polymeric carriers release antibiotics by diffusion and/or upon degradation, while active polymeric carriers release their antibiotics upon stimuli provided by bacterial pathogens. Additionally, some polymeric carriers gelate in-situ in response to physiological stimuli to form a depot for antibiotic release. As antibiotic resistance has become a major issue, also other anti-infectives such as silver and antimicrobial peptides have been incorporated in research. Currently, several antibiotic loaded biomaterials for local infection prophylaxis are available for use in the clinic. Here we review their advantages and limitations and provide an overview of new materials emerging that may overcome these limitations

    Preparation of gentamicin dioctyl sulfosuccinate loaded poly(trimethylene carbonate) matrices intended for the treatment of orthopaedic infections

    Get PDF
    BACKGROUND: Infection is a common problem in trauma and orthopaedic surgery. Antibiotic-loaded biomaterials are used locally to clear infections as an adjunct to systemic antibiotics. Gentamicin-sulphate (GEN-SULPH) is commonly used in antibiotic-loaded biomaterials, although it displays high water solubility resulting in quick diffusion from the carrier.\ud \ud OBJECTIVE: Preparation of a lipophilic derivative of gentamicin to reduce solubility and obtain a slower release. Subsequently, entrapment of this lipophilic gentamicin within poly(trimethylene carbonate) (PTMC) matrices.\ud \ud METHODS: Hydrophobic ion-pairing was used to prepare lipophilic gentamicin (GEN-AOT). The susceptibility of Staphylococcus aureus NCTC 12973 and Staphylococcus epidermidis 103.1 for GEN-AOT was tested and the viability of fibroblasts upon exposure to GEN-AOT was assessed. GEN-AOT was then loaded into PTMC films.\ud \ud RESULTS: GEN-AOT was successfully prepared as confirmed by FTIR-spectroscopy. GEN-AOT was bactericidal for S. epidermidis and S. aureus at 0.5 μM and 8.5 μM, respectively. At 1.1 μM GEN-AOT no reduction in fibroblast viability was observed. At 11 μM the reduction was ∼50% . PTMC discs loaded with GEN-AOT were prepared by compression molding.\ud \ud CONCLUSIONS: Lipophilic GEN-AOT was at least as potent as GEN-SULPH. For S. epidermidis it was even more potent than GEN-SULPH. More than 50% fibroblast cell viability was maintained at bactericidal concentration for both bacterial strains
    corecore