9 research outputs found

    Vector-field statistics for the analysis of time varying clinical gait data.

    Get PDF
    BACKGROUND: In clinical settings, the time varying analysis of gait data relies heavily on the experience of the individual(s) assessing these biological signals. Though three dimensional kinematics are recognised as time varying waveforms (1D), exploratory statistical analysis of these data are commonly carried out with multiple discrete or 0D dependent variables. In the absence of an a priori 0D hypothesis, clinicians are at risk of making type I and II errors in their analyis of time varying gait signatures in the event statistics are used in concert with prefered subjective clinical assesment methods. The aim of this communication was to determine if vector field waveform statistics were capable of providing quantitative corroboration to practically significant differences in time varying gait signatures as determined by two clinically trained gait experts. METHODS: The case study was a left hemiplegic Cerebral Palsy (GMFCS I) gait patient following a botulinum toxin (BoNT-A) injection to their left gastrocnemius muscle. FINDINGS: When comparing subjective clinical gait assessments between two testers, they were in agreement with each other for 61% of the joint degrees of freedom and phases of motion analysed. For tester 1 and tester 2, they were in agreement with the vector-field analysis for 78% and 53% of the kinematic variables analysed. When the subjective analyses of tester 1 and tester 2 were pooled together and then compared to the vector-field analysis, they were in agreement for 83% of the time varying kinematic variables analysed. INTERPRETATION: These outcomes demonstrate that in principle, vector-field statistics corroborates with what a team of clinical gait experts would classify as practically meaningful pre- versus post time varying kinematic differences. The potential for vector-field statistics to be used as a useful clinical tool for the objective analysis of time varying clinical gait data is established. Future research is recommended to assess the usefulness of vector-field analyses during the clinical decision making process

    The evolution of compliance in the human lateral mid-foot.

    Get PDF
    Fossil evidence for longitudinal arches in the foot is frequently used to constrain the origins of terrestrial bipedality in human ancestors. This approach rests on the prevailing concept that human feet are unique in functioning with a relatively stiff lateral mid-foot, lacking the significant flexion and high plantar pressures present in non-human apes. This paradigm has stood for more than 70 years but has yet to be tested objectively with quantitative data. Herein, we show that plantar pressure records with elevated lateral mid-foot pressures occur frequently in healthy, habitually shod humans, with magnitudes in some individuals approaching absolute maxima across the foot. Furthermore, the same astonishing pressure range is present in bonobos and the orangutan (the most arboreal great ape), yielding overlap with human pressures. Thus, while the mean tendency of habitual mechanics of the mid-foot in healthy humans is indeed consistent with the traditional concept of the lateral mid-foot as a relatively rigid or stabilized structure, it is clear that lateral arch stabilization in humans is not obligate and is often transient. These findings suggest a level of detachment between foot stiffness during gait and osteological structure, hence fossilized bone morphology by itself may only provide a crude indication of mid-foot function in extinct hominins. Evidence for thick plantar tissues in Ardipithecus ramidus suggests that a human-like combination of active and passive modulation of foot compliance by soft tissues extends back into an arboreal context, supporting an arboreal origin of hominin bipedalism in compressive orthogrady. We propose that the musculoskeletal conformation of the modern human mid-foot evolved under selection for a functionally tuneable, rather than obligatory stiff structure

    Linear dependence of peak, mean, and pressure-time integral values in plantar pressure images.

    No full text
    Dynamic plantar pressure images are routinely used in clinical gait assessment, and peak pressure, mean pressure, and pressure-time integral are the most frequently used parameters to summarize these images. Many studies report only one parameter, but other studies report all three. The interdependency of these variables has not been explicitly studied previously. The purpose of this study was to describe the linear relation between these three pressure parameters. 327 subjects walked normally over a pressure plate. Peak pressure, mean pressure and pressure-time integral were calculated for 10 different anatomical areas and, after applying a previously described spatial normalization procedure, these variables were also calculated for each pixel. Mean pressure was highly correlated with peak pressure (r=0.90+/-0.09) and pressure-time integral (r=0.81+/-0.13) for pixels. Peak pressure and pressure-time integral showed a linear correlation coefficient of r=0.78+/-0.21. The pressure parameters of the forefoot pixels were more highly correlated than the heel pixels. The current results have two major implications: (1) plantar pressure parameters (peak, mean, and impulse) can be reasonably compared across studies, even across parameters, and (2) the variables most commonly used to characterize plantar pressures are highly inter-correlated, implying that a smaller set of parameters may more efficiently capture the biomechanical behavior of interest
    corecore