8 research outputs found

    Axonal T<sub>2</sub> estimation using the spherical variance of the strongly diffusion-weighted MRI signal.

    Get PDF
    In magnetic resonance imaging, the application of a strong diffusion weighting suppresses the signal contributions from the less diffusion-restricted constituents of the brain's white matter, thus enabling the estimation of the transverse relaxation time T &lt;sub&gt;2&lt;/sub&gt; that arises from the more diffusion-restricted constituents such as the axons. However, the presence of cell nuclei and vacuoles can confound the estimation of the axonal T &lt;sub&gt;2&lt;/sub&gt; , as diffusion within those structures is also restricted, causing the corresponding signal to survive the strong diffusion weighting. We devise an estimator of the axonal T &lt;sub&gt;2&lt;/sub&gt; based on the directional spherical variance of the strongly diffusion-weighted signal. The spherical variance T &lt;sub&gt;2&lt;/sub&gt; estimates are insensitive to the presence of isotropic contributions to the signal like those provided by cell nuclei and vacuoles. We show that with a strong diffusion weighting these estimates differ from those obtained using the directional spherical mean of the signal which contains both axonal and isotropically-restricted contributions. Our findings hint at the presence of an MRI-visible isotropically-restricted contribution to the signal in the white matter ex vivo fixed tissue (monkey) at 7T, and do not allow us to discard such a possibility also for in vivo human data collected with a clinical 3T system

    Topological principles and developmental algorithms might refine diffusion tractography.

    Get PDF
    The identification and reconstruction of axonal pathways in the living brain or "ex-vivo" is promising a revolution in connectivity studies bridging the gap from animal to human neuroanatomy with extensions to brain structural-functional correlates. Unfortunately, the methods suffer from juvenile drawbacks. In this perspective paper we mention several computational and developmental principles, which might stimulate a new generation of algorithms and a discussion bridging the neuroimaging and neuroanatomy communities

    Macrofilaricidal Activity in Wuchereria bancrofti after 2 Weeks Treatment with a Combination of Rifampicin plus Doxycycline

    Get PDF
    Infection with the filarial nematode Wuchereria bancrofti can lead to lymphedema, hydrocele, and elephantiasis. Since adult worms cause pathology in lymphatic filariasis (LF), it is imperative to discover macrofilaricidal drugs for the treatment of the infection. Endosymbiotic Wolbachia in filariae have emerged as a new target for antibiotics which can lead to macrofilaricidal effects. In Ghana, a pilot study was carried out with 39 LF-infected men; 12 were treated with 200 mg doxycycline/day for 4 weeks, 16 were treated with a combination of 200 mg doxycycline/day + 10 mg/kg/day rifampicin for 2 weeks, and 11 patients received placebo. Patients were monitored for Wolbachia and microfilaria loads, antigenaemia, and filarial dance sign (FDS). Both 4-week doxycycline and the 2-week combination treatment reduced Wolbachia load significantly. At 18 months posttreatment, four-week doxycycline resulted in 100% adult worm loss, and the 2-week combination treatment resulted in a 50% adult worm loss. In conclusion, this pilot study with a combination of 2-week doxycycline and rifampicin demonstrates moderate macrofilaricidal activity against W. bancrofti

    Accelerated Microstructure Imaging via Convex Optimization (AMICO) from diffusion MRI data.

    Get PDF
    Microstructure imaging from diffusion magnetic resonance (MR) data represents an invaluable tool to study non-invasively the morphology of tissues and to provide a biological insight into their microstructural organization. In recent years, a variety of biophysical models have been proposed to associate particular patterns observed in the measured signal with specific microstructural properties of the neuronal tissue, such as axon diameter and fiber density. Despite very appealing results showing that the estimated microstructure indices agree very well with histological examinations, existing techniques require computationally very expensive non-linear procedures to fit the models to the data which, in practice, demand the use of powerful computer clusters for large-scale applications. In this work, we present a general framework for Accelerated Microstructure Imaging via Convex Optimization (AMICO) and show how to re-formulate this class of techniques as convenient linear systems which, then, can be efficiently solved using very fast algorithms. We demonstrate this linearization of the fitting problem for two specific models, i.e. ActiveAx and NODDI, providing a very attractive alternative for parameter estimation in those techniques; however, the AMICO framework is general and flexible enough to work also for the wider space of microstructure imaging methods. Results demonstrate that AMICO represents an effective means to accelerate the fit of existing techniques drastically (up to four orders of magnitude faster) while preserving accuracy and precision in the estimated model parameters (correlation above 0.9). We believe that the availability of such ultrafast algorithms will help to accelerate the spread of microstructure imaging to larger cohorts of patients and to study a wider spectrum of neurological disorders

    Validation of structural brain connectivity networks: The impact of scanning parameters

    No full text
    Contains fulltext : 213829.pdf (publisher's version ) (Open Access)Evaluation of the structural connectivity (SC) of the brain based on tractography has mainly focused on the choice of diffusion model, tractography algorithm, and their respective parameter settings. Here, we systematically validate SC derived from a post mortem monkey brain, while varying key acquisition parameters such as the b-value, gradient angular resolution and image resolution. As gold standard we use the connectivity matrix obtained invasively with histological tracers by Markov et al. (2014). As performance metric, we use cross entropy as a measure that enables comparison of the relative tracer labeled neuron counts to the streamline counts from tractography. We find that high angular resolution and high signal-to-noise ratio are important to estimate SC, and that SC derived from low image resolution (1.03 mm3) are in better agreement with the tracer network, than those derived from high image resolution (0.53 mm3) or at an even lower image resolution (2.03 mm3). In contradiction, sensitivity and specificity analyses suggest that if the angular resolution is sufficient, the balanced compromise in which sensitivity and specificity are identical remains 60-64% regardless of the other scanning parameters. Interestingly, the tracer graph is assumed to be the gold standard but by thresholding, the balanced compromise increases to 70-75%. Hence, by using performance metrics based on binarized tracer graphs, one risks losing important information, changing the performance of SC graphs derived by tractography and their dependence of different scanning parameters.13 p

    Limits to anatomical accuracy of diffusion tractography using modern approaches.

    No full text
    Diffusion MRI fiber tractography is widely used to probe the structural connectivity of the brain, with a range of applications in both clinical and basic neuroscience. Despite widespread use, tractography has well-known pitfalls that limits the anatomical accuracy of this technique. Numerous modern methods have been developed to address these shortcomings through advances in acquisition, modeling, and computation. To test whether these advances improve tractography accuracy, we organized the 3-D Validation of Tractography with Experimental MRI (3D-VoTEM) challenge at the ISBI 2018 conference. We made available three unique independent tractography validation datasets - a physical phantom and two ex vivo brain specimens - resulting in 176 distinct submissions from 9 research groups. By comparing results over a wide range of fiber complexities and algorithmic strategies, this challenge provides a more comprehensive assessment of tractography's inherent limitations than has been reported previously. The central results were consistent across all sub-challenges in that, despite advances in tractography methods, the anatomical accuracy of tractography has not dramatically improved in recent years. Taken together, our results independently confirm findings from decades of tractography validation studies, demonstrate inherent limitations in reconstructing white matter pathways using diffusion MRI data alone, and highlight the need for alternative or combinatorial strategies to accurately map the fiber pathways of the brain
    corecore