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Microstructure imaging from diffusion magnetic resonance (MR) data represents an invaluable tool to study
non-invasively the morphology of tissues and to provide a biological insight into their microstructural organization.
In recent years, a variety of biophysical models have been proposed to associate particular patterns observed in the
measured signal with specific microstructural properties of the neuronal tissue, such as axon diameter and fiber
density. Despite very appealing results showing that the estimated microstructure indices agree very well with
histological examinations, existing techniques require computationally very expensive non-linear procedures to fit
the models to the data which, in practice, demand the use of powerful computer clusters for large-scale applications.
In this work, we present a general framework for Accelerated Microstructure Imaging via Convex Optimization
(AMICO) and show how to re-formulate this class of techniques as convenient linear systems which, then, can be
efficiently solved using very fast algorithms. We demonstrate this linearization of the fitting problem for two specific
models, i.e. ActiveAx and NODDI, providing a very attractive alternative for parameter estimation in those
techniques; however, the AMICO framework is general and flexible enough to work also for the wider
space of microstructure imaging methods. Results demonstrate that AMICO represents an effective means to
accelerate the fit of existing techniques drastically (up to four orders of magnitude faster) while preserving accuracy
and precision in the estimated model parameters (correlation above 0.9). We believe that the availability of such
ultrafast algorithms will help to accelerate the spread of microstructure imaging to larger cohorts of patients and

to study a wider spectrum of neurological disorders.
© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
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Introduction motion of water molecules (Le Bihan et al., 1986; Beaulieu, 2002).

Diffusion Tensor Imaging (DTI) (Basser et al., 1994) was the first

The brain is the principal organ of the central nervous system that
governs all the vital functions of a human being and defines its behavior.
The white matter (WM) is the intricate neuronal circuitry responsible
for transmitting the information between different cortical regions of
the gray matter (GM). Any local disruption to this complex system
may lead to an overall malfunctioning of the whole organism, causing
a broad spectrum of possible neurological disorders. Diffusion magnetic
resonance imaging (dMRI) offers a unique tool to study these pathological
conditions as it provides the possibility to assess non-invasively the
microstructure of the neuronal tissue by probing the natural thermal
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attempt to formally describe the anisotropy of this random process
in biological tissues. DTI can estimate the principal diffusion direction
from very few dMRI measurements but, as the model assumes
Gaussianity of the diffusion process, more than one fiber population
cannot be resolved in the same voxel.

A large number of alternatives have been proposed to circumvent this
limitation. A non-comprehensive list includes models that directly extend
conventional DTI (Tuch et al., 2002; Schultz and Seidel, 2008; Barmpoutis
et al., 2009), Persistent Angular Structure (Jansons and Alexander,
2003), Diffusion Orientation Transform (Ozarslan et al., 2006), Diffusion
Spectrum Imaging (Wedeen et al,, 2005) and all the methods based either
on Q-Ball Imaging (Tuch, 2004; Canales-Rodriguez et al., 2009; Aganj
et al., 2010) or Spherical Deconvolution (SD) (Tournier et al., 2004;
Alexander, 2005; Dell'Acqua et al.,, 2007; Descoteaux et al., 2009); for a

1053-8119/© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).


http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2014.10.026&domain=pdf
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1016/j.neuroimage.2014.10.026
mailto:alessandro.daducci@epfl.ch
http://dx.doi.org/10.1016/j.neuroimage.2014.10.026
http://creativecommons.org/licenses/by/3.0/
http://www.sciencedirect.com/science/journal/10538119

A. Daducci et al. / Neurolmage 105 (2015) 32-44 33

more detailed overview, see Daducci et al. (2014a) and references therein.
Above all, SD approaches have attracted a lot of consideration over the
past few years and the reasons for their success are twofold. First, they
can be formulated as simple linear systems and, thus, solved with very
efficient algorithms (Jian and Vemuri, 2007). Second, they have been
shown to produce very accurate and robust reconstructions also in the
case of complex intra-voxel fiber configurations, using a number of
dMRI measurements comparable to DTI (Ramirez-Manzanares et al.,
2011; Daducci et al., 2014a). However, all these techniques recover
exclusively the directional information of the fiber populations in a
voxel, but do not provide any insight into their microstructural
organization. The diameter of the axons, for instance, is directly related
to the propagation speed of the nerve impulses within WM fascicles
(Waxman, 1980); the knowledge of such microstructure properties is
crucial to be able to study any pathological condition from a biological
perspective.

Another class of techniques, known as microstructure imaging, aims
at extracting such precious information by using explicit biophysical
modeling of the decay patterns in different tissue compartments, e.g.
axons, glial cells and extra-axonal space. These methods can infer not
only the orientation of the main fiber populations in a voxel, but also
very important microstructural properties of the tissue, such as the
average diameter and density of the axons. A variety of approaches
have been proposed in the literature; Panagiotaki et al. (2012) provide
a comprehensive survey of existing techniques. A simple evolution of
DTI was proposed by Behrens et al. (2003) to distinguish between
water molecules that diffuse inside and around the axons, which are
modeled as ideal cylinders with zero radius, and those moving freely
with isotropic diffusion. Assaf and Basser (2005) made a further
distinction, in their CHARMED model, between molecules that are
restricted within the axons, i.e. intra-axonal space, and those that are
hindered in the extra-axonal space around them, assuming no exchange
between the two pools. The axons are approximated by parallel cylinders
with a fixed radius and the corresponding signal profiles are modeled
using the analytical expression of Neuman (1974) that describes particles
diffusing within cylindrical geometries; an anisotropic Gaussian process is
instead assumed in the extra-axonal space. The AxCaliber model (Assaf
et al,, 2008) is an extension of CHARMED in which the axon radii are
explicitly modeled using Gamma distributions, rather than being fixed
to a given size. AxCaliber allows the estimation of the axon diameter
from diffusion MRI, in a similar way to the model proposed by Stanisz
et al. (1997) using NMR spectroscopy data. However, AxCaliber requires
prior knowledge about the orientation of the fascicle to probe, limiting
de facto axon diameter mapping to specific brain structures; moreover,
the intrinsic long scan times are not suitable for clinical applications.

With this in mind, the ActiveAx technique developed by Alexander
et al. (2010) was specifically designed to overcome both limitations, as
it allows the estimation of orientationally-invariant indices of axon
diameter and density in scan time tolerable by live human subjects,
using an optimized acquisition protocol. This method made it possible
to extend axon diameter mapping to the whole brain, thus enabling
the combination of microstructure indices with tractography
(Sherbondy et al., 2010; Daducci et al., 2014b). ActiveAx uses a Minimal
Model of White Matter Diffusion (MMWMD) with four compartments
to describe the measured dMRI signal (Alexander et al., 2010; Dyrby
et al., 2013); besides the restricted and hindered compartments
previously considered by Assaf and Basser (2005), the MMWMD accounts
also for stationary water trapped within small structures such as glial
cells, in a similar way to Stanisz's model (Stanisz et al., 1997), as well as
free water characterized by isotropic diffusion. Recently, the MMWNMD
was extended to improve the estimation in brain regions with orientation
dispersion (Zhang et al., 2011b) and crossing fibers (Zhang et al,, 2011a).
However, the corresponding acquisition protocols require about a 1-hour
scan and, thus, are still difficult to be routinely included in clinical studies.
To enable the estimation of useful microstructural information also within
clinical scan times, e.g. 10-15 min, the MMWMD with orientation

dispersion was later simplified by Zhang et al. (2012). In the resulting
technique, termed Neurite Orientation Dispersion and Density Imaging
(NODDI), the axon diameter parameter was dropped from the model
and the formulation was rather optimized to describe the observed
dMRI signal as a function of the volume fraction and orientation
dispersion of the axons, as well as the partial volume with cerebrospinal
fluid (CSF). On the one hand, all these techniques have demonstrated
the practical possibility to estimate microstructural information from
dMRI data in addition to just the orientation of the fiber populations in
a voxel, and the estimated microstructural indices have been shown to
agree very well with known anatomical patterns observed with histology
(Alexander et al., 2010; Zhang et al., 2012; Dyrby et al., 2013). On the
other hand, however, the non-linear routines usually employed to fit
these models, as well as other diffusion modalities (Hernandez et al.,
2013; Chang et al., 2014), are computationally very intensive and cause
practical problems for their application in clinical studies, especially
with large cohorts of subjects.

In this paper, we propose to take advantage of the versatility of
convex optimization to re-formulate microstructure imaging techniques
as equivalent but convenient linear systems that can be solved efficiently
using very fast algorithms, thus meeting real application demands; we
call this framework AMICO, standing for Accelerated Microstructure
Imaging via Convex Optimization. As a proof of concept, we demonstrate
the effectiveness of the proposed framework for two specific applica-
tions, i.e. ActiveAx and NODDI, but its flexibility makes it possible to
linearize also other popular microstructure imaging techniques. The
AMICO framework is presented in the following section together with
the experimental settings used for validation. We report and discuss
results with both numerical simulations and real data, highlighting
advantages and limitations of the proposed approach. The source code
of AMICO is available at https://github.com/daducci/AMICO/.

Materials and methods

In this section, we first revise the general framework adopted in
classical SD methods to recover the fiber orientations in a voxel, as it
will lay the foundations to introduce the AMICO approach. Then, we
will show how a straightforward extension of such SD framework allows
us to formulate also classical microstructure imaging techniques by
means of linear systems of equations and, thus, solve them efficiently
using convex optimization techniques.

General framework for fiber orientation reconstruction

In classical spherical deconvolution methods, the dMRI signal
E(q) in each voxel is modeled as the convolution of a fiber orientation

distribution (FOD) function f:S?—R* with a response function
K(-, 1) corresponding to the signal attenuation of a single fiber with

orientation uEs?:

B@-Ef (1)
Jok(q0) fla) di,

where Ej is the signal without diffusion weighting and the integration is
performed over the unit sphere S%. The FOD is usually expressed as a
linear combination of Ny basis functions, also called atoms, as f(i1) =
Z:iﬂ w; f;(1) and several alternatives have been proposed in the literature,
e.g. discrete mixture of Gaussians (Ramirez-Manzanares et al., 2007) or
spherical harmonics (Tournier et al,, 2007). As we have already mentioned,
a key factor for the success of these approaches is that, when the response
functions are known (or can be estimated) a priori, the measurement
process can be expressed as a system of linear equations, as follows:

y=dx 41, (2)
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where xR+ are the coefficients of the FOD to be estimated,y=R" is the

vector containing the Ny normalized g-space measurements, & = {(bi i } S

RNe*Me s the linear operator, also called dictionary, that explicitly models
the convolution operation in Eq. (1) with ¢;; = | ,K(q;, u) f;(u) daand
1 accounts for the acquisition noise. Consequently, the linear problem (2)
can be efficiently solved using a variety of algorithms based on convex
optimization. Without loss of generality, existing methods can be recast
into the following general regularized least-squares formulation:

argmin Jiox—yl3 +N W(x) 3)
x>0 ~—~—
data fitness regularization

where Il * Il , is the standard {¢,-norm in R", the positivity constraint is
explicitly imposed as the coefficients x correspond to volume fractions,
W(-) represents a generic regularization function and the parameter
N\ > 0 controls the trade-off between data and regularization terms.
The optimal value for \ can be either set empirically, as done in previous
studies (Tournier et al., 2007; Descoteaux et al., 2007; Landman et al.,
2012), or estimated using ad hoc techniques such as the L-curve
(Hansen, 1999) or the generalized cross-validation (Golub et al., 1979).
For N = 0, Eq. (3) is the standard non-negative least-squares (NNLS).
However, as pointed out by Jian and Vemuri (2007), “most
deconvolution models used in literature result in extremely ill-
conditioned linear systems”; besides, in many practical situations
the dictionary & can be under-determined, i.e. more unknowns
than measurements, for the number of acquired dMRI images is usually
as low as possible to reduce the scan time. Hence, a regularization is
required in most cases to either improve the stability of the reconstruction
problem or to inject prior knowledge. ¥ = Il * Il 1 is a popular choice
to promote sparsity in the FOD (Ramirez-Manzanares et al., 2007;
Michailovich et al., 2011; Landman et al., 2012), when in fact Tikhonov
regularization (Tikhonov and Arsenin, 1977) is usually adopted to reduce
ill-conditioning in the matrix < (Jian and Vemuri, 2007; Tournier et al.,
2007).

General framework for tissue microstructure quantification (AMICO)

To express microstructure imaging techniques as linear systems
of the form in Eq. (2), we propose to decouple the reconstruction of
the intra-voxel fiber geometry, i.e. number and orientation of fiber
populations, from the assessment of their microstructure properties,
i.e. diameter and density. This allows us to break down the complexity
of the original methods into two simpler sub-problems. To achieve
that, we first estimate the orientation of the major fiber populations
using standard methods, e.g. DTI or SD, as they are well-known for
providing very accurate and robust reconstructions (Daducci et al.,
2014a). Since in this work we focus on models that assume only
one fiber population, i.e. ActiveAx and NODDI, we estimate its direction
UES? using DTI (Basser et al., 1994). Once u is known, it is possible to
extend the linear operator & in Eq. (2) to account for the distinct water
pools that arise from axons oriented in direction pu.

To simplify the exposition, in the following we will describe how to
build the linear operator & for a canonical orientation, i.e. z-axis; then,
as & depends on the particular p estimated in a voxel, we will use the
shorthand notation & = R, (®) to denote the operation Ry, : RNe*Ne—
RNe<Ne that rotates each atom of & to match the actual direction of u
estimated in the voxel. Besides, since ActiveAx and NODDI implement
rather different models, we will treat these two cases separately and
we will show how to construct ad hoc dictionaries, labeled ®, for the
former and &dy for the latter, in order to express both models by
means of the same general formulation of Eq. (3). We refer to this
framework as AMICO (Accelerated Microstructure Imaging via Convex
Optimization).

Linear formulation for ActiveAx

To express the ActiveAx model (Alexander et al., 2010) as a linear
system, it is useful to partition the dictionary ®,ERN*N into three
sub-matrices:

by = [0 0R |} ], (4)

where @LeRNN pherNoN and @l erNN model explicitly the
intra-axonal, extra-axonal and isotropic contributions to the dMRI
signal in the voxel, with N, = N; + Nj, + N;. The construction of the
three sub-dictionaries for the case of the ex-vivo monkey samples
used in Alexander et al. (2010) is detailed below; a similar procedure
can be used also for in-vivo data.

Each column in ®eRNe*Nr corresponds to the signal attenuation
of the water molecules restricted within parallel cylinders with a
specific diameter. We considered N, = 22 different axon radii, in
the range 0.01-10 um, and the corresponding signal profiles were
estimated according to the cylinder model, borrowing the taxonomy
of Panagiotaki et al. (2012), and assuming longitudinal diffusivity
dy = 0.6 x 10~ mm?/s, which is typical for ex-vivo fixed samples,
as in Alexander et al. (2010).

Likewise, the atoms in bR RNe*Nt aim at describing the hindered
space around these axons. We adopted the zeppelin model to
include N;, = 7 different hindered micro-environments characterized
by distinct perpendicular diffusivities d, between 0.06 x 10~> and
0.42 x 103 mm?/s, which were calculated via the tortuosity model
in Szafer et al. (1995) assuming the same d; and intra-axonal volume
fractions in the range 0.3-0.9.

Finally, a single compartment was considered, i.e. CDf,\E]RNd , to account
for any isotropic diffusion contribution to the voxel. The corresponding
response function was generated according to the ball model and
setting the isotropic diffusivity d;s, = 2.0 x 103 mm?/s, usually
observed in ex-vivo samples, as in Alexander et al. (2010). Hence,
the final dictionary d4 consists of N, = 30 atoms in total.

Then, ActiveAx can be formulated as a convex optimization problem
as follows:

argmin %II(T)Ax—yH% + )\%lelli (5)
x>0

where the classical Tikhonov regularization ¥ = il - II% was employed to
improve the stability of the problem. If we naturally partition the
estimated coefficients x into [x'[x"|x/], the intra-axonal volume fraction 1’
and the indices of axon diameter a’ and density p’, defined in Alexander
et al. (2010), can be expressed as:

/ ZT:VI X

V=——— (6)
N, N, h
Zj:1x5 + Zj:h]xj
N, r
’ Zj:lszxj
o =0T (7)
>
j=17J
;4
p = na? (8)

where, for j € {1, ..., N;}, we denote with R; the radius of the cylinders
corresponding to the j-th atom in ®a. We will refer to this formulation
as ActiveAXamico, @S Opposed to the original version that here we call
ActiveAXorig.
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Linear formulation for NODDI

The NODDI model (Zhang et al., 2012) does not attempt to estimate
the diameter of the axons, but it aims at explaining the anisotropy
observed in the dMRI signal in terms of their density and orientation
dispersion. In NODDI, the dMRI signal E(q)ERf‘f is described with the
following hierarchical model:

E(q) = VisoEiso (q) + (] _Viso)[vicEic(q) + VecEec(q)]v (9)

where E;.R, E,.R"¢ and E;;,€R" are, respectively, the normalized
dMRI signal of the intra-cellular, extra-cellular and isotropic
compartments, and Vi, Ve and Vi, are the corresponding volume
fractions, with v, = 1 — V.. Eic and E,. adopt the orientation-dispersed
cylinder model introduced in Zhang et al. (2011b) based on Watson
distributions, which are real functions on the unit sphere S? that are
rotationally symmetric about u682 and whose concentration parameter
K controls the amount of dispersion around it. The latter can be
conveniently reported between 0 and 1 using the orientation dispersion
index (Zhang et al.,, 2012):

0D = 2 arctan <1) (10)
m K

NODDI explicitly captures the natural coupling between the
intra-cellular and extra-cellular compartments, rather than treating
the apparent parallel and perpendicular diffusivities as independent
free parameters like previous techniques. In the NODDI model, the
anisotropy of the extra-cellular compartment is dictated by the density
and the orientation dispersion of the intra-cellular compartment; as a
result, E.. depends on both v;. and k, which are parameters to be
estimated. This dependence makes this model slightly more complicated
to formulate as a linear system than ActiveAx. To linearize the NODDI
model, then, it is convenient to partition the dictionary dyeRN*Ne
into the following two blocks:

by = [([)tN ’([)H , (11)

in which the isotropic contributions are modeled through oL eRNN: as
in ActiveAXamico but, in this case, the sub-matrix (thE]RNdXN‘ accounts
explicitly for the coupled intra- and extra-cellular compartments in
the tissue, with N, = N; + N;. These sub-dictionaries, for the in-vivo
human data used in Zhang et al. (2012), are constructed as follows; a
similar procedure can be used also for ex-vivo data.

Each column in dy eRNe*Ne corresponds to the signal attenuation that
arises from a micro-environment characterized by a specific density
and orientation dispersion of the axons. We considered N, = 144
distinct combinations, with 12 values for v;. € {0.1, ..., 1} and 12
different k € {0, ..., 20}. The corresponding signal profiles were
estimated according to the model of dispersed WM based on the
Watson distributions (Zhang et al., 2011b) and assuming longitudinal
diffusivity d, = 1.7 x 10~3 mm?/s, which is commonly observed in
in-vivo human data, as in Zhang et al. (2012).

[sotropic contributions are modeled as in Eq. (4), i.e. Dk = Oy, but
setting the isotropic diffusivity dj, = 3.0 x 10~> mm?/s, which is
typical in in-vivo human data, as in Zhang et al. (2012). Therefore,
the final dictionary dy consists of N, = 145 atoms in total.

Hence, NODDI can be formulated as a convex optimization problem
as:

argmin 5 IIcDNx yllz . I|x||2 + yixlq, (12)

x>0

where, besides the Tikhonov prior ¥; =1l - II2 used in Eq. (5), we
employed an additional regularization functlon W, =1 " Il { to promote
sparsity in the recovered coefficients, with Il - Il ; the standard ¢;-norm

in R, It is worth noting, though, that the solution is sparse only in the N;
atoms of df and that the isotropic contribution must be free to take any
value without restriction. Unfortunately, however, publicly available
solvers (such as the one used in this work, see later) offer only the
possibility to enforce the sparsity prior on the whole coefficient vector
x. We adopted the following strategy to overcome this limitation:

1. The volume fraction of the isotropic compartment v;s,, which is
actually not affected by the sparsity prior, is first estimated by solving
Eq. (12) without regularization, i.e. A\ =y = 0.

2. We then~riemove this isotropic contribution from the dMRI signal, i.e.
y = y—®dyVis, and solve again Eq. (12) but enforcing this time the
sparsity prior on the remaining coefficients. This step identifies the
support of the solution, i.e. the smallest subset of atoms needed to
explain the signal y, but solutions are known to be biased because
the ¢; norm tends to under-estimate the true value of the coefficients
(Figueiredo et al., 2007).

3. For this reason, we finally apply a debiasing step to correct the
magnitude of the recovered coefficients, by solving once more Eq.
(12), without regularization, over the previously identified support
set of the solution, as in Figueiredo et al. (2007).

Let [x{|x/] be the partition of the coefficients x according to Eq. (11);
the parameters of the NODDI model, defined in Zhang et al. (2012), can
then be computed as:

. Z f] J
‘ Z] ]X;

ZT kX
Dy

(13)

(14)

Viso ZX (15)

where, for j € {1, ..., N¢}, we denote with f; and k;, respectively, the
intra-cellular volume fraction and the concentration parameter
corresponding to the j-th atom in df. We will refer to this formulation
as NODDI,mico, as opposed to the original version here termed NODDIig.

Datasets

We tested AMICO using data and experimental settings used in the
original publications, respectively (Alexander et al., 2010) for ActiveAx
and (Zhang et al., 2012) for NODDI. For convenience, in the following
we summarize a few details about the data.

ActiveAx data

In Alexander et al. (2010), ex-vivo dMRI images' of a fixed monkey
brain, prepared as in Dyrby et al. (2011), were acquired on a 4.7 T Varian
system. Three slices centered on the mid-sagittal plane of the corpus
callosum (CC) were acquired with a 0.4 mm isotropic spatial resolution
and an interslice gap of 2 mm. The imaging protocol was optimized for
a maximum gradient strength G,,,ox = 140 mT/m using the procedure de-
tailed in Alexander (2008). A total of 360 measurements were divided
into 4 shells with b-values {1930, 1930, 3090, 13190} S/mm? correspond-
ing, respectively, to gradient amplitudes G = {140, 140, 131, 140} mT/m,
6=1{10.2,10.2,7.6,17.7} ms,A = {16.7,16.7,45.9, 35.8} ms and same TR/
TE = 5000/60 ms for all images. No spatial smoothing was applied to the
images. In addition, to quantitatively validate the method, synthetic data
was generated for the same imaging protocol using the diffusion simula-
tor system in the Camino toolkit> (Hall and Alexander, 2009), by

! http://dig.dremr.dk/activeax-dataset;.
2 www.camino.org.uk.
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simulating random walks of water molecules in 44 different substrates
of WM microstructure with known geometry, as in Alexander et al.
(2010). Each substrate consists of non-abutting and impermeable cylin-
ders with realistic axon diameter distributions and fiber densities; a
total of 22 different axon radii histograms were considered, each
simulated for 2 distinct packing densities. Finally, the signal was
contaminated with Rician noise (Gudbjartsson and Patz, 1995) to
reproduce a signal-to-noise ratio (SNR) in the Eq signal with values
ranging from 10 to 50; for each substrate, 100 noise realizations have
been tested, for a total of 4400 experiments for each SNR.

NODDI data

In Zhang et al. (2012), dMRI data was synthesized according to the
model of dispersed WM based on the Watson distributions (Zhang
et al,, 2011b). A total of 80 different substrates were tested as combina-
tions of the following parameters typically observed in human brain
tissue: intra-cellular volume fraction v;. € {0.2, 0.4, 0.6, 0.8}, isotropic
volume fraction v;5, € {0.0}, average axon diameter a € {0.5, 1, 2, 4} pm
and concentration of the Watson distribution k € {0, 0.25, 1, 4, 16}.
Each configuration was evaluated along 250 directions evenly distributed
over the sphere in order to assess any potential dependence on the mean
orientation p; as we did in the case of ActiveAx, the corresponding signal
was contaminated with Rician noise using the same SNR range. Among all
imaging protocol variants investigated in Zhang et al. (2012), in our
current experiments we used the following one as it matches the
in-vivo human dataset released with the NODDI toolbox: two shells
with 24 measurements at b-value 700 s/mm? and 48 at 2000 s/mm?,
maximum gradient strength Gpqx = 40 mT/m, spatial resolution
1.875 x 1.875 x 2.5 mm? and using the same 6/A/TR/TE = 27.7/32.2/
12400/86.6 ms for all images.

Experiments

The free parameters N\ and 7y controlling the degree of regularization
in the AMICO formulations (5) and (12) must be determined. As the
goal of this work was to reproduce the microstructure estimates of the
original models using faster algorithms, we have searched empirically
for values that allowed us to obtain similar (or better) estimates.
Specifically, we restricted the search in the range 0-0.5 and computed
the average absolute error of the estimated model parameters in the
synthetic data with SNR = 30, as it corresponds to the typical noise
level in real acquisitions. The optimal values identified this way were
then used consistently throughout the rest of the article, i.e. all synthetic
and real data, in order to avoid computing the optimal regularization
coefficients for each single experiment, which would unnecessarily
overload the exposition. For comparison, reconstructions without regu-
larization (N = 0 and 'y = 0) will be also reported.

To quantitatively evaluate the effectiveness of the proposed convex
formulations, we have compared the microstructure indices estimated
with AMICO on the synthetic substrates, for which the ground-truth is
known, to those computed using the Matlab implementations® of the
original algorithms used in Alexander et al. (2010) and Zhang et al.
(2012). The quality of the reconstructions was assessed by means of:

* Absolute error between the true, i.e. p; and the estimated
microstructure indices, i.e. p;, defined as Ap = %ZL |pj—pj| .
where N is the number of voxels. The metric Ap has the same unit
as its values p;. Both bias and variance in the estimation are analyzed.

 Correlation between the estimated and the ground-truth values,
expressed as the Pearson correlation coefficient r.

3 NODDlI,ig is available online via the NODDI Matlab toolbox at http://cmic.cs.ucl.ac.uk/
mig/index.php?n=Tutorial. NODDImatlab. The Matlab implementation of ActiveAXoyig is
not publicly available, but a Java implementation is distributed as part of the Camino toolkit
at www.camino.org.uk; the results of the two versions differ, but provide very similar
estimates.

In the case of real acquisitions, the ground-truth was clearly
unknown, both in-vivo and ex-vivo; hence, only a qualitative
comparison between the estimated parameters was possible.

We have also compared the two approaches in terms of the time
required to fit the models to the data. If on the one hand the linearization
of the models with AMICO allows us to effectively break down the
complexity of the original problem into two simpler sub-problems, on
the other hand a valid concern about this strategy is that it might be
sensitive to the initial estimation of the fiber orientation. For this reason,
we have explicitly tested the effect of inaccuracies in the fiber orientation
estimation on the quality of the reconstructions with AMICO.

Implementation details

In all our experiments, we used standard DTI (Basser et al., 1994)
to estimate the orientation of the main fiber population u=s? in each
voxel. In particular, we fit a diffusion tensor to the log-transformed
dMRI measurements using the ordinary least-squares (LS) proce-
dure implemented in Matlab and we set p to the estimated principal
eigenvector. Then, as the dictionaries ®, and ®dy in a voxel depend
on the specific g estimated in it, we precomputed rotated versions
of all the atoms with an angular resolution of 1° and used lookup-
tables to accelerate the construction of the ad hoc dictionaries in
each voxel. In the case of ActiveAx, the response functions were
generated using the tool datasynth that is available in the Camino
toolkit, as it provides analytic models (Panagiotaki et al., 2012) to
efficiently synthesize the dMRI measurements corresponding to all
necessary compartments. The response functions for the NODDI
dictionaries were generated according to the model of dispersed
WM using the Watson distributions implemented in the NODDI
toolbox (Zhang et al., 2011b). Lastly, to solve Egs. (5) and (12), we
used the SPArse Modeling Software (SPAMS) optimization toolbox.*
This open-source library provides a very flexible implementation in
C++ of the proximal splitting method of Beck and Teboulle (2009),
which allows the resolution of a large class of linear problems using a
wide range of regularization functions. All experiments have been con-
ducted on a standard workstation (Intel Core i7, 2.80 GHz, 6 GB ram)
without multi-threading or parallel computing.

Results and discussion
Sensitivity to the regularization parameter

The left plots in Fig. 1 report the average absolute error of
ActiveAXamico in the estimation of 7 (top) and a’ (bottom) as a function
of the regularization parameter \. Results correspond to the reconstruc-
tions on the 44 substrates at SNR = 30 and the green line indicates the
performance of the original algorithm. As can be noticed, with sufficient
regularization, i.e. N > 0.1, ActiveAX,mico €stimates both microstructure
indices more accurately than the original algorithm; on the other hand,
with no regularization, i.e. \ = 0, the average errors are much higher.
The intra-axonal volume fraction v’ shows very similar performances
starting from a regularization N =~ 0.02 and its estimates appear very
stable over the rest of the range. The axon diameter index a’ presents
a minimum error at N = 0.1 and then slowly deteriorates, but it always
stays below the corresponding error of ActiveAXorig (= 0.7 um, green
line). For this reason, we set X = 0.1 for the rest of the article and report
the results only for this level of regularization. A similar analysis
(right plots) led to the identification of N = 0.001 and y = 0.5 as
optimal regularization parameters in the case of NODDI mjco-

4 http://spams-devel.gforge.inria.fr.
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ActiveAx

Fig. 2 compares, as a function of the SNR, the intra-axonal volume
fraction 17 (left) and axon diameter a’ (right) indices estimated by
ActiveAXqrig and ActiveAX,mico 0N the 44 synthetic substrates. AMICO is
presented both without regularization and for X = 0.1. The top plots
report the absolute error in estimating 7’ and a’ (mean and standard

Intra-axonal volume fraction

deviation), while in the bottom we compare their correlation with the
ground-truth values. The first result that can be clearly observed is that,
without regularization, the convex approach does not provide plausible
estimates. This is revealed in the much higher average errors for both
parameters as well as in their low correlation with the ground-truth.
Conversely, if the problem is appropriately regularized, ActiveAXamico
provides very accurate, i.e. low average errors, and robust estimates, i.e.
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Fig. 2. ActiveAx performances on the synthetic substrates as a function of SNR. ActiveAX,mico With N\ = 0 (orange) and N\ = 0.1 (red) is compared to ActiveAXg (green) by means of the
average absolute error (top) and correlation (bottom) of the estimated parameters 1" (left) and a’ (right) with respect to the ground-truth.
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low standard deviations, of both microstructure parameters, almost
indistinguishable from those estimated with the original algorithm.
The axon diameter index a’ appears to be estimated better with
ActiveAXamico than ActiveAx,ig, both in terms of absolute errors
and correlation to the ground-truth. Concerning the estimation of the
intra-axonal volume fraction 17, the two approaches show similar
performances, but the estimates with ActiveAXamico progressively
deteriorate for SNR < 20, and exhibit slightly higher absolute errors
and lower correlations than ActiveAx,ig. However, this was expected
because, at low SNR regimes, the measurement noise cannot be approxi-
mated as a Gaussian (Gudbjartsson and Patz, 1995) and thus the data
fidelity term, which is based on the {,-norm of the residual, does not
represent the optimal log-likelihood model for the noise in Rician
contaminated data. ActiveAXoyig, on the other hand, implements the
proper noise model and thus it is expected to be more accurate in
high noise conditions.

Table 1 reports the time required by the fit with two algorithms; the
first column corresponds to the results presented in Fig. 2. The original
ActiveAXig algorithm took about 11 days to fit the model to all the
voxels, i.e. 44 substrates x 100 noise trials x 6 SNR, which corresponds
to ~38 s/voxel. On the other hand, this burdensome computation time
can be drastically reduced with the proposed convex formulation by
several orders of magnitude as indeed, on the same data, ActiveAXamico
required less than 20 s, approximately 0.7 ms/voxel.

Fig. 3 zooms in on the individual reconstructions obtained on
each substrate, in the noiseless case and at SNR = 20. The estimated
parameters v’ and a’ are plotted in red against their corresponding
ground-truth values v and «, and their averages over the 100 noise
runs are reported as blue crosses. These scatter plots clearly confirm
that the parameters v’ and a’ estimated by ActiveAXamico Without
regularization (middle) have very little correlation with the ground-
truth, and that their values can depart considerably from the true
ones. Nonetheless, the situation changes substantially when the problem
is properly regularized (bottom), as indeed the estimated parameters
look actually very accurate and concentrated around the true values; for
this reason, from now on we will report only the results corresponding
to the regularized version of AMICO. Comparing then directly the
reconstructions of ActiveAXorig (top) with ActiveAXamico (bottom), we
can recognize the presence of the same “lower bound” at about 2 pm
observed in Dyrby et al. (2013) for the sensitivity to detection of different
axon diameters for any Gy,qx. Similarly, ActiveAx,ig exhibits a tendency,
highlighted in the same publication, to under-estimate the a’ index as «
increases, whereas ActiveAXaimico Seems slightly more robust to this
effect. In the case of noiseless data, the a’ index estimated with
ActiveAX,rig in large axon configurations (= 6 — 7 pm) is not affected
by the packing density of the substrates, as expected, while ActiveAXamico
returns slightly different values. On the other hand, ActiveAX,yig seems to
be much more sensitive to the packing density than ActiveAxXamico for
medium axons (=~ 3 — 4 pm). The two approaches showed opposite
behaviors for the estimation of the intra-axonal volume fraction: in
fact, ActiveAX,rig tends to under-estimate 1’ whereas ActiveAXamico
slightly over-estimates it. Another point worth mentioning is that,
while in ActiveAX,g the contributions of the compartments sum to
unity by definition, this constraint was not explicitly imposed in our
convex formulation (5). Nonetheless, results showed that this physical
constraint is naturally met also in the case of ActiveAXamico: in fact, the
sum of the coefficients is 0.997 + 0.001 (mean + standard deviation)

Table 1
Computation time required by the original algorithms and the corresponding convex
formulations for each full experiment performed in this study.

ActiveAx NODDI

Substrates CCslice Substrates ~ Whole brain
Original method 11 days 14 h40 min 4 h30 min 40 h 20 min 65 h 10 min
AMICO approach 18's 03s 6min20s 9 min30s

on the noiseless data and 1.010 & 0.055 at SNR = 20. Future experiments
will be conducted to assess any possible benefit from an explicit incorpo-
ration of such constraint in every voxel. Lastly, it can be noticed that the
original algorithm appears to suffer from some outliers in the estimates,
especially in the case of a’, whereas the AMICO approach seems more
robust. A possible explanation stems from the fact that ActiveAx,ig uses
optimization procedures, notably a final Markov Chain Monte Carlo
(MCMQC) stage, that can get trapped in one of the local minima of the
objective function; on the other hand, ActiveAX,mic, Naturally ensures
convergence to the global minimum, as the formulation is convex.

One shortcoming of the proposed approach is that it assumes
the main fiber population in the voxel to be accurately estimated
beforehand, whereas the original ActiveAx method considers also
its orientation as an unknown in the fit. In Fig. 4 we explicitly tested
the influence of inaccuracies in the assessment of it on the performances
of ActiveAXamico. The absolute errors (mean and standard deviation) in
the estimation of v’ and a’ are plotted as a function of the angular
separation between the estimated p and the actual orientation of the
fiber population in the voxel. Results correspond to the reconstructions
with ActiveAXamico (N = 0.1) on the 44 synthetic substrates at SNR =
30; for reference, the performances of ActiveAx,,ig are also reported in
green. No significant deterioration in the assessment of the intra-
axonal volume fraction v’ can be observed even with inaccuracies in
the estimation of g up to 15°. The mean absolute error for ActiveAXamico
progressively degrades, but it never departs significantly from the
corresponding average performance of ActiveAx,ig (green dotted line,
=~ 0.03) on the same data. For the estimation of the axonal diameter
index a’, ActiveAX,mico €xhibits stable reconstructions and smaller errors
than ActiveAxqig Up to 7°, but a rapid deterioration in accuracy can be
observed for inaccuracies in the assessment of p above 9 — 10°. However,
the central pillar this work is based upon is that, actually, classical
methods for fiber orientation recovery have been shown to produce
quite accurate reconstructions; in particular, in the case of voxels with
only one fiber population, as assumed in the ActiveAx model, DTI can
estimate its orientation with very high accuracy (Daducci et al,, 2014a).

Lastly, we tested ActiveAXamico also using measured brain data from
the original publication. Fig. 5 compares the maps of the axonal diameter
a’ (top) and density p’ (bottom) indices estimated by ActiveAXoyig (left)
and ActiveAXamico (middle) in the mid-sagittal slice of the CC of the
ex-vivo monkey dataset, whose SNR was around 20. The difference
maps between the two approaches are also shown. From visual inspec-
tion, it can be appreciated that the maps estimated with the proposed
convex approach are in very good agreement with those of ActiveAXyig.
Both methods exhibit the expected pattern of axonal diameter and
density variation across the CC as seen in previous ActiveAx studies
(Alexander et al., 2010; Zhang et al., 2011a; Dyrby et al., 2013) as well
as with electron microscopy (Lamantia and Rakic, 1990): smaller
axons densely packed in the genu and the splenium (low a’ and high
p’) while the mid-body composed of bigger axons with lower density
(high a’ and low p’). ActiveAX,mico maps are less speckly than those
from the original fitting, most likely as a result of the same local
minimum issue previously highlighted that causes outliers in the
estimates of the original fitting. Moreover, ActiveAXamico Shows slightly
higher estimates of a’ and, correspondingly, smaller p’ values. It is also
worth noting that, for this ex-vivo data, we have used the same
regularization previously estimated on the synthetic substrates, thus
confirming the robustness to the choice of the regularization parameter
highlighted in Fig. 1.

NODDI

Similarly, in Fig. 6 we provide an overall comparison, as a function of
the SNR, between NODDI, g and NODDI,pic, On the 80 synthetic
substrates. As before, AMICO results are presented both with and without
regularization. The performances have been assessed by means of the ab-
solute error (mean and standard deviation) in the estimated parameters
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Fig. 3. ActiveAx detailed performances on the synthetic substrates. The parameters 1’ and a’ estimated by ActiveAXig (top) and ActiveAX,mico With two levels of regularization (N = 0 in
the middle and N = 0.1 at the bottom) on each individual substrate are plotted against their corresponding idealized indices of intra-axonal volume fraction v and axon diameter c. Red
marks show the individual estimates for each of the 100 noise realizations of every substrate, whereas the corresponding mean values over the trials are marked in blue. Results are

reported for SNR = 20 (left) and noiseless data (right).

Vi and OD and their correlation with the ground-truth values. Results
confirm that our proposed convex formulation can provide very accurate
estimates also in the case of the NODDI model. If properly regularized
(N = 0.001 and 'y = 0.5), no appreciable differences in the average
absolute error could be observed for both microstructure indices with
respect to the original model (compare green and red); in particular,
the correlation with ground-truth values appears almost indistinguish-
able between the two approaches. On the other hand, higher absolute
errors and lower correlation are evident if no regularization is employed
(orange). As shown in the third column of Table 1, the time required by

Intra-axonal volume fraction

the original NODDI,g algorithm to fit the model to all voxels, i.e. 80
substrates x 250 orientations of g x 6 SNR, was about 40 h; on the
same data, our convex NODDI,c, approach took only 6 min.
Although it does not use the proper noise model, NODDI,mjco
exhibits better performance than NODDI,g, i.e. smaller average error,
as the noise level increases. Fig. 7 provides a possible explanation for
this behavior. The microstructure indices OD (left), v;. (middle) and
Viso (right) estimated with NODDIig and NODDI, i, are plotted, as
mean and standard deviation, against the corresponding ground-truth
values of each substrate. With no noise (top plots), the three algorithms
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reference, the green line indicates the performance of ActiveAXorig.
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Fig. 5. ActiveAx evaluation on the ex-vivo monkey dataset. Axonal diameter a’ (top) and density p’ (bottom) maps estimated by ActiveAX,yig (left) and ActiveAxX,mico (middle) in
the mid-sagittal slice of the corpus callosum. The last column shows the difference between the corresponding ActiveAXig and ActiveAX,mico maps. The SNR in the WM was around 20.

are essentially equivalent, showing very accurate estimates and with
very low variability; curiously, though, NODDI,,;, exhibits a higher
variance in the estimation of OD for configurations with an orientation
dispersion of 0.84. In the case of noisy data (bottom plots), v is still
estimated very accurately, but we could see that all the methods tend
to under-estimate the axonal dispersion for very dispersed configura-
tions, as already highlighted in Zhang et al. (2012). At the same time, an
over-estimation of v, can be observed as the intra-cellular volume
fraction of the substrates decreases; please note that no isotropic
compartment was simulated in these substrates, i.e. the ground-truth
Viso = 0. These two phenomena correspond to voxel configurations
characterized by a diffusion process which is progressively becoming
isotropic; in these situations, then, the predicted signals for the different
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compartments present in the voxel are very close and it is difficult
to distinguish among them. Hence, their contribution is arbitrarily dis-
tributed among them, a condition that we picture as a kind of
“exchange of energy” between the compartments.

Lastly, we tested our convex formulation for the NODDI model
also in the case of in-vivo human data. Fig. 8 shows the maps of the
microstructure parameters OD, Vic and v, estimated with NODDI ;g
and NODDI,pico, the latter both with and without regularization, in
two representative slices of the brain. The difference maps between
the original and the convex approach (with regularization) are also
shown. For reference, the Fractional Anisotropy (FA) and Apparent
Diffusion Coefficient (ADC) values extracted from standard DTI analysis
are also shown. The time required to fit the model in the whole brain
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Fig. 6. NODDI performances on the synthetic substrates as a function of SNR. The reconstructions of NODDI, i, obtained with (red) and without regularization (orange) are compared to
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was about 65 h with the original algorithm, whereas less than 10 min
was required using our convex formulation. Despite this big gap in
computation time, the v;, maps estimated by the three approaches
appear almost identical; in fact, the average absolute difference between
the original NODDI and our AMICO approach over the whole brain is
0.004 + 0.009 (mean and standard deviation). Also, no significant
discrepancies can be observed in the maps of the intra-cellular volume
fraction v, with the exception of few voxels, especially at the boundary
with CSF, where we can clearly observe the aforementioned “exchange
of energy” in locations with almost isotropic diffusion. The average
absolute difference is a bit higher in this case, i.e. 0.032 + 0.119;
however, if we exclude these voxels from the analysis, we obtain a
more indicative measure of the actual discrepancy between the two
methods in the brain, i.e. 0.015 + 0.028. Finally, it is worth noting that
the NODDI, algorithm provides a heterogeneous classification for such
voxels and, in general, they are identified as being characterized by
unusually high neurite density (very bright voxels in v; maps). On the
other hand, with NODDI, i, they are consistently classified as containing
very few axons, i.e. low v, and having high dispersion, i.e. high OD. In all
remaining voxels, the OD maps estimated with the two algorithms are
almost indistinguishable, with an average absolute difference of
0.018 4 0.022. Again, if no regularization is employed, the resulting
OD maps are extremely noisy and not in agreement with the expected
anatomical patterns.

Advantages and limitations

The principal benefit of the proposed AMICO framework is to pro-
vide an acceleration factor of several orders of magnitude in the intrinsic
fitting time required by existing microstructure imaging techniques
(see Table 1). ActiveAx uses a three-stage routine to fit the model to
the data (Alexander et al., 2010), where a grid search of the parameters
is followed, in turn, by a non-linear gradient descent stage and a final

MCMC procedure; NODDI uses a similar routine but omits the last
MCMC step. These non-linear procedures are very computationally
intensive and pose practical difficulties for large scale applications.
Microstructure imaging techniques have already been employed
successfully in a number of clinical studies (Winston et al., 2014; Kunz
et al,, 2014; Lemkaddem et al., 2014); the availability of faster algorithms
might favor their adoption on a larger scale without the need for powerful
computer clusters. The tremendous acceleration enabled with AMICO is
mainly due to the linearization of the models achievable by splitting the
estimation of the intra-voxel fiber orientation and of its microstructure
properties into two simpler sub-problems. A more elegant and robust
approach to solve such separable problems would be to develop an
alternating minimization algorithm (Csisz et al., 1984) which repeatedly
optimizes, in turn, with respect to the orientation of the fiber population
and then over its microstructure properties, until convergence.

Besides accelerating the fit, results also showed that AMICO can
achieve slightly more accurate and robust parameter estimates than the
original techniques. The latter, in particular, appeared to suffer from
some outliers in the estimates, which are likely to be caused by the
non-linear procedures that are used to fit the models. In fact, besides
being computationally demanding, non-linear algorithms are susceptible
to get trapped in the local minima of the objective function; to minimize
this probability, both ActiveAx and NODDI use in fact an initial grid search
over the parameter space to identify a good starting point for the
subsequent optimization. By comparison, AMICO formulations are
convex and, consequently, they do not need any initialization procedure
and, especially, always guarantee to converge to the global minimum.

In this work, the regularization parameters in Eqs. (5) and (12) have
been set by searching empirically for their values in order to reproduce
at best the microstructure indices estimated by the original algorithms.
Actually, results have shown that the proposed convex formulations are
rather insensitive to the specific choice of N and vy, and that the estimated
indices are almost indistinguishable from those obtained using the
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Fig. 8. NODDI evaluation on the in-vivo human dataset. The microstructure parameters OD, v;c and v, estimated with NODDI,;; and NODDI, mico, both with and without regularization, are
reported in two representative slices of the brain. The last column shows the difference between the corresponding NODDI,ig and NODDI,mico maps. FA and ADC maps extracted from
standard DTI analysis are reported as reference.

original algorithms for a broad range of regularization parameters (Fig. 1). classic methods like Tournier et al. (2007); Descoteaux et al. (2007);
Empirical procedures are commonly employed in the field for setting the and Landman et al. (2012). Nonetheless, ad hoc techniques exist to
regularization trade-off of similar ill-posed problems; see for instance estimate the optimal values for these parameters, using for instance the
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L-curve method (Hansen, 1999) or the generalized cross-validation
(Golub et al., 1979); these strategies will be explored in the future to
further improve the estimates with AMICO.

General observations

The results presented in this paper served as a proof of concept to
show how microstructure imaging methods can be accelerated using
convex optimization. The linear operators introduced in Egs. (4) and
(11) indeed showed to provide excellent agreement with the original
models in all synthetic and real data experiments, thus fulfilling the
aim of the present work. It would be very interesting, though, to study
the performances of the proposed formulations for different choices of
the linear operators, e.g. number of the atoms and considered ranges
for the parameters; despite its importance, it goes beyond the purpose
of the present work. Yet, as the current formulations do not fully exploit
all the versatility of the framework, we foresee that AMICO can be
further enhanced in a number of ways. For instance, it is reasonable to
expect similar contributions from each compartment in spatially
adjacent voxels; to this end, Total Variation (TV) regularization is a
popular choice for promoting spatial smoothness of the coefficients
across voxels. Due to magnitude improvement in the fitting speed
with AMICO, one could also combine, in the search for finer anatomical
details, such regularization approaches with interpolation of the raw
dMRI data (Dyrby et al., 2014). Additional priors might be also imposed
in each voxel among the compartments, to model more in detail such
complex micro-environments. In the case of NODDI, for example,
there exists a coupling between the intra-cellular volume fraction v
and the shape of the extra-cellular response functions, which depend
on both V. and k. This relationship implicitly imposes a structure on
the coefficients, partitioning them into disjoint groups such that
coefficients in the same group tend to be zeros all together; in these sit-
uations, a regularization based on group sparsity (Yuan and Lin, 2006)
might improve significantly the reconstructions, as this structure is
adequately captured by means of a group {;-norm penalty. Future
research will be devoted to investigate all these additional forms of
regularization.

In this study, we have focused our attention on two specific
techniques, i.e. ActiveAx and NODDI, that actually assume only one
fiber population in each voxel. Recently, though, some efforts have
been made to extend these models and account for more complex
intra-voxel fiber configurations; ActiveAx, for example, has been
extended to allow axon diameter mapping also in the presence of
axonal dispersion (Zhang et al., 2011b) and crossing fibers (Zhang
et al,, 2011a), whereas Bingham distributions have been introduced in
NODDI to account for anisotropic rather than isotropic only dispersion
(Tariq et al,, 2014), as also done in Kaden et al. (2007) and Sotiropoulos
et al. (2012). All these enhancements can be as well integrated into the
linear systems (5) and (12), as the flexibility and generality of the
proposed framework allow us to conveniently inject additional
prior knowledge. Nevertheless, for the sake of clarity and to avoid
overloading the exposition, in this work we preferred to concentrate
only on the original formulations and leave the inclusion of these
extended models to future research, where we will also investigate the
effectiveness of using AMICO to linearize other popular microstructure
imaging techniques, e.g. CHARMED (Assaf and Basser, 2005), and the
wide range of similar compartment models explored in Panagiotaki
et al. (2012) and Ferizi et al. (2013).

Another possible area for improvement of the current formulations is
the direct incorporation of the proper noise model into the data fidelity
term. The implementations presented in this work are in fact based on
the {,-norm of the residual, i.e. Il dx — y Il 5, and therefore they implicitly
assume a zero-mean Gaussian distribution for the noise. However, it has
been demonstrated that this assumption is never met in most practical
situations, especially in the case of multichannel acquisitions
where the noise has been shown to rather follow Rician or Non-

central y distributions (Gudbjartsson and Patz, 1995; Dietrich et al.,
2008). Recent studies have incorporated these proper noise models in
classical SD methods for fiber orientation recovery (Dolui et al., 2012;
Canales-Rodriguez et al., under review); future work will be required
to adapt these expressions to the microstructure imaging algorithms
considered in this work.

Conclusion

The aim of this study was to improve the burdensome fitting time
required by existing microstructure imaging techniques in diffusion
MRI. We have shown how to conveniently re-formulate these models
as simple linear systems that can be solved very efficiently using convex
optimization, thus enabling a drastic reduction in the computation time
by orders of magnitude, while still preserving the accuracy and robustness
of the estimated parameters. We have demonstrated the effectiveness of
the AMICO framework for two well-known methods, i.e. ActiveAx and
NODD], but the flexibility of the proposed formulation will allow its
extension to the broader range of existing techniques. The availability
of such ultrafast fitting algorithms will help the practical application of
these models in larger cohorts of patients.
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