1,608 research outputs found

    Existence of families of spacetimes with a Newtonian limit

    Get PDF
    J\"urgen Ehlers developed \emph{frame theory} to better understand the relationship between general relativity and Newtonian gravity. Frame theory contains a parameter λ\lambda, which can be thought of as 1/c21/c^2, where cc is the speed of light. By construction, frame theory is equivalent to general relativity for λ>0\lambda >0, and reduces to Newtonian gravity for λ=0\lambda =0. Moreover, by setting \ep=\sqrt{\lambda}, frame theory provides a framework to study the Newtonian limit \ep \searrow 0 (i.e. cc\to \infty). A number of ideas relating to frame theory that were introduced by J\"urgen have subsequently found important applications to the rigorous study of both the Newtonian limit and post-Newtonian expansions. In this article, we review frame theory and discuss, in a non-technical fashion, some of the rigorous results on the Newtonian limit and post-Newtonian expansions that have followed from J\"urgen's work

    Empiric Models of the Earth's Free Core Nutation

    Full text link
    Free core nutation (FCN) is the main factor that limits the accuracy of the modeling of the motion of Earth's rotational axis in the celestial coordinate system. Several FCN models have been proposed. A comparative analysis is made of the known models including the model proposed by the author. The use of the FCN model is shown to substantially increase the accuracy of the modeling of Earth's rotation. Furthermore, the FCN component extracted from the observed motion of Earth's rotational axis is an important source for the study of the shape and rotation of the Earth's core. A comparison of different FCN models has shown that the proposed model is better than other models if used to extract the geophysical signal (the amplitude and phase of FCN) from observational data.Comment: 8 pages, 3 figures; minor update of the journal published versio

    Aspects of Nucleon Compton Scattering

    Full text link
    We consider the spin-averaged nucleon forward Compton scattering amplitude in heavy baryon chiral perturbation theory including all terms to order O(q4){\cal O} (q^4). The chiral prediction for the spin-averaged forward Compton scattering amplitude is in good agreement with the data for photon energies ω110\omega \le 110 MeV. We also evaluate the nucleon electric and magnetic Compton polarizabilities to this order and discuss the uncertainties of the various counter terms entering the chiral expansion of these quantities.Comment: 17 pp, TeX, 7 figures available from the authors, preprint CRN-93/5

    Soft x-ray spectroscopy experiments on the near K-edge of B in MB2 (M=Mg, Al, Ta, and Nb)

    Full text link
    Soft X-ray absorption and emission measurements are performed for the K- edge of B in MB2_2 (M=Mg, Al, Ta and Nb). Unique feature of MgB2_2 with a high density of B 2pxy(σ)p_{xy}(\sigma)-state below and above the Fermi edge, which extends to 1 eV above the edge, is confirmed. In contrast, the B 2pp density of states in AlB2_2 and TaB2_2, both of occupied and unoccupied states, decreased linearly towards the Fermi energy and showed a dip at the Fermi energy. Furthermore, there is a broadening of the peaks with pσp\sigma-character in XES and XAS of AlB2_2, which is due to the increase of three dimensionality in the pσp\sigma-band in AlB2_2. The DOS of NbB2_2 has a dip just below the Fermi energy. The present results indicate that the large DOS of B-2pσp\sigma states near the Fermi energy are crucial for the superconductivity of MgB2_2.Comment: 3 pages text and 4 pages figures. accepted for publication to Phys. Rev.

    Macroscopic resonant tunneling of magnetic flux

    Full text link
    We have developed a quantitative theory of resonant tunneling of magnetic flux between discrete macroscopically distinct quantum states in SQUID systems. The theory is based on the standard density-matrix approach. Its new elements include the discussion of the two different relaxation mechanisms that exist for the double-well potential, and description of the ``photon-assisted'' tunneling driven by external rf radiation. It is shown that in the case of coherent flux dynamics, rf radiation should lead to splitting of the peaks of resonant flux tunneling, indicating that the resonant tunneling is a convenient tool for studying macroscopic quantum coherence of flux.Comment: 11 pages, 8 figure

    Elastic Scattering by Deterministic and Random Fractals: Self-Affinity of the Diffraction Spectrum

    Full text link
    The diffraction spectrum of coherent waves scattered from fractal supports is calculated exactly. The fractals considered are of the class generated iteratively by successive dilations and translations, and include generalizations of the Cantor set and Sierpinski carpet as special cases. Also randomized versions of these fractals are treated. The general result is that the diffraction intensities obey a strict recursion relation, and become self-affine in the limit of large iteration number, with a self-affinity exponent related directly to the fractal dimension of the scattering object. Applications include neutron scattering, x-rays, optical diffraction, magnetic resonance imaging, electron diffraction, and He scattering, which all display the same universal scaling.Comment: 20 pages, 11 figures. Phys. Rev. E, in press. More info available at http://www.fh.huji.ac.il/~dani

    Fano Resonances in Electronic Transport through a Single Electron Transistor

    Full text link
    We have observed asymmetric Fano resonances in the conductance of a single electron transistor resulting from interference between a resonant and a nonresonant path through the system. The resonant component shows all the features typical of quantum dots, but the origin of the non-resonant path is unclear. A unique feature of this experimental system, compared to others that show Fano line shapes, is that changing the voltages on various gates allows one to alter the interference between the two paths.Comment: 8 pages, 6 figures. Submitted to PR

    Finite element simulation of three-dimensional free-surface flow problems

    Get PDF
    An adaptive finite element algorithm is described for the stable solution of three-dimensional free-surface-flow problems based primarily on the use of node movement. The algorithm also includes a discrete remeshing procedure which enhances its accuracy and robustness. The spatial discretisation allows an isoparametric piecewise-quadratic approximation of the domain geometry for accurate resolution of the curved free surface. The technique is illustrated through an implementation for surface-tension-dominated viscous flows modelled in terms of the Stokes equations with suitable boundary conditions on the deforming free surface. Two three-dimensional test problems are used to demonstrate the performance of the method: a liquid bridge problem and the formation of a fluid droplet

    The Persistence Length of a Strongly Charged, Rod-like, Polyelectrolyte in the Presence of Salt

    Full text link
    The persistence length of a single, intrinsically rigid polyelectrolyte chain, above the Manning condensation threshold is investigated theoretically in presence of added salt. Using a loop expansion method, the partition function is consistently calculated, taking into account corrections to mean-field theory. Within a mean-field approximation, the well-known results of Odijk, Skolnick and Fixman are reproduced. Beyond mean-field, it is found that density correlations between counterions and thermal fluctuations reduce the stiffness of the chain, indicating an effective attraction between monomers for highly charged chains and multivalent counterions. This attraction results in a possible mechanical instability (collapse), alluding to the phenomenon of DNA condensation. In addition, we find that more counterions condense on slightly bent conformations of the chain than predicted by the Manning model for the case of an infinite cylinder. Finally, our results are compared with previous models and experiments.Comment: 13 pages, 2 ps figure

    Wormholes and Ringholes in a Dark-Energy Universe

    Get PDF
    The effects that the present accelerating expansion of the universe has on the size and shape of Lorentzian wormholes and ringholes are considered. It is shown that, quite similarly to how it occurs for inflating wormholes, relative to the initial embedding-space coordinate system, whereas the shape of the considered holes is always preserved with time, their size is driven by the expansion to increase by a factor which is proportional to the scale factor of the universe. In the case that dark energy is phantom energy, which is not excluded by present constraints on the dark-energy equation of state, that size increase with time becomes quite more remarkable, and a rather speculative scenario is here presented where the big rip can be circumvented by future advanced civilizations by utilizing sufficiently grown up wormholes and ringholes as time machines that shortcut the big-rip singularity.Comment: 11 pages, RevTex, to appear in Phys. Rev.
    corecore