12 research outputs found

    There are no magnetically charged particle-like solutions of the Einstein Yang-Mills equations for Abelian models

    Full text link
    We prove that there are no magnetically charged particle-like solutions for Abelian models in Einstein Yang-Mills, but for non-Abelian models the possibility remains open. An analysis of the Lie algebraic structure of the Yang-Mills fields is essential to our results. In one key step of our analysis we use invariant polynomials to determine which orbits of the gauge group contain the possible asymptotic Yang-Mills field configurations. Together with a new horizontal/vertical space decomposition of the Yang-Mills fields this enables us to overcome some obstacles and complete a dynamical system existence theorem for asymptotic solutions with nonzero total magnetic charge. We then prove that these solutions cannot be extended globally for Abelian models and begin an investigation of the details for non-Abelian models.Comment: 48 pages, 1 figur

    Existence of families of spacetimes with a Newtonian limit

    Get PDF
    J\"urgen Ehlers developed \emph{frame theory} to better understand the relationship between general relativity and Newtonian gravity. Frame theory contains a parameter λ\lambda, which can be thought of as 1/c21/c^2, where cc is the speed of light. By construction, frame theory is equivalent to general relativity for λ>0\lambda >0, and reduces to Newtonian gravity for λ=0\lambda =0. Moreover, by setting \ep=\sqrt{\lambda}, frame theory provides a framework to study the Newtonian limit \ep \searrow 0 (i.e. c→∞c\to \infty). A number of ideas relating to frame theory that were introduced by J\"urgen have subsequently found important applications to the rigorous study of both the Newtonian limit and post-Newtonian expansions. In this article, we review frame theory and discuss, in a non-technical fashion, some of the rigorous results on the Newtonian limit and post-Newtonian expansions that have followed from J\"urgen's work

    Cosmological post-Newtonian expansions to arbitrary order

    Full text link
    We prove the existence of a large class of one parameter families of solutions to the Einstein-Euler equations that depend on the singular parameter \ep=v_T/c (0<\ep < \ep_0), where cc is the speed of light, and vTv_T is a typical speed of the gravitating fluid. These solutions are shown to exist on a common spacetime slab M\cong [0,T)\times \Tbb^3, and converge as \ep \searrow 0 to a solution of the cosmological Poisson-Euler equations of Newtonian gravity. Moreover, we establish that these solutions can be expanded in the parameter \ep to any specified order with expansion coefficients that satisfy \ep-independent (nonlocal) symmetric hyperbolic equations

    On the positive mass theorem for manifolds with corners

    Full text link
    We study the positive mass theorem for certain non-smooth metrics following P. Miao's work. Our approach is to smooth the metric using the Ricci flow. As well as improving some previous results on the behaviour of the ADM mass under the Ricci flow, we extend the analysis of the zero mass case to higher dimensions.Comment: 21 pages, incorporated referee's comment

    Post-Newtonian expansions for perfect fluids

    Full text link
    We prove the existence of a large class of dynamical solutions to the Einstein-Euler equations that have a first post-Newtonian expansion. The results here are based on the elliptic-hyperbolic formulation of the Einstein-Euler equations used in \cite{Oli06}, which contains a singular parameter \ep = v_T/c, where vTv_T is a characteristic velocity associated with the fluid and cc is the speed of light. As in \cite{Oli06}, energy estimates on weighted Sobolev spaces are used to analyze the behavior of solutions to the Einstein-Euler equations in the limit \ep\searrow 0, and to demonstrate the validity of the first post-Newtonian expansion as an approximation

    Stability of complex hyperbolic space under curvature-normalized Ricci flow

    Full text link
    Using the maximal regularity theory for quasilinear parabolic systems, we prove two stability results of complex hyperbolic space under the curvature-normalized Ricci flow in complex dimensions two and higher. The first result is on a closed manifold. The second result is on a complete noncompact manifold. To prove both results, we fully analyze the structure of the Lichnerowicz Laplacian on complex hyperbolic space. To prove the second result, we also define suitably weighted little H\"{o}lder spaces on a complete noncompact manifold and establish their interpolation properties.Comment: Some typos in version 2 are correcte

    Classical Yang-Mills Black hole hair in anti-de Sitter space

    Get PDF
    The properties of hairy black holes in Einstein–Yang–Mills (EYM) theory are reviewed, focusing on spherically symmetric solutions. In particular, in asymptotically anti-de Sitter space (adS) stable black hole hair is known to exist for frak su(2) EYM. We review recent work in which it is shown that stable hair also exists in frak su(N) EYM for arbitrary N, so that there is no upper limit on how much stable hair a black hole in adS can possess
    corecore