16 research outputs found
Dynamic phase separation of fluid membranes with rigid inclusions
Membrane shape fluctuations induce attractive interactions between rigid
inclusions. Previous analytical studies showed that the fluctuation-induced
pair interactions are rather small compared to thermal energies, but also that
multi-body interactions cannot be neglected. In this article, it is shown
numerically that shape fluctuations indeed lead to the dynamic separation of
the membrane into phases with different inclusion concentrations. The tendency
of lateral phase separation strongly increases with the inclusion size. Large
inclusions aggregate at very small inclusion concentrations and for relatively
small values of the inclusions' elastic modulus.Comment: 6 pages, 6 figure
Molecular dynamics simulations of a mixed DOPC/DOPG bilayer
We have constructed a mixed dioleoylphosphatidylcholine (DOPC) and dioleoylphosphatidylglycerol bilayer (DOPG) bilayer utilizing MD simulations. The aim was to develop an explicit molecular model of biological membranes as a complementary technique to neutron diffraction studies that are well established within the group. A monolayer was constructed by taking a previously customised PDB file of each molecule and arranging them in a seven rows of ten molecules and duplicated and rotated to form a bilayer. The 140-molecule bilayer contained 98 DOPC molecules and 42 DOPG molecules, in a 7:3 ratio in favour of DOPC. Sodium counter ions were placed near the phosphate moiety of DOPG to counteract the negative charge of DOPG. This was representative of the lipid ratio in a sample used for neutron diffraction. The MD package GROMACS was used for confining the bilayer in a triclinic box, adding Simple Polar Charge water molecules, energy minimization (EM). The bilayer/solvent system was subjected to EM using the steepest descent method to nullify bad contacts and reduce the potential energy of the system. Subsequent MD simulation using an initial NVT (constant number of particles, volume and temperature) for a 20 ps MD run followed by a NPT (constant number of particles, pressure and temperature) was performed. Structural parameters including volume of lipid, area of lipid, order parameter of the fatty acyl carbons and electron density profiles generated by the MD simulation were verified with values obtained from experimental data of DOPC, as there are no comparable experimental data available for the mixed bilayer
Neutron diffraction with an excess water cell
As part of a study of the molecular basis of membrane fusion by enveloped viruses, we have used neutron diffraction to study the lamellar (L(α)) to inverse hexagonal (H(II)) phase transition in the phospholipid N-methylated dioleoylphosphatidylethanolamine. This lipid was chosen because its phase transitions are particularly sensitive to the presence of agents that have been demonstrated to promote or inhibit membrane fusion. Two different geometries of neutron diffraction were used: small angle scattering (SANS) and a membrane diffractometer. The SANS measurements were carried out on the SWAN instrument at KEK, Japan, using dispersions of multilamellar vesicles (MLVs). The diffractometer measurements used the V1 instrument at BeNSC-HMI, Germany, with a specially-constructed cell that holds a stack of lipid bilayers in an excess-water state. The two approaches are compared and discussed. Although the diffractometer takes considerably longer to collect the data, it records much higher resolution than the SANS instrument. The samples recorded in the excess-water cell were shown to be well aligned, despite the lipids being fully hydrated, allowing for the production of high-resolution data. Trial measurements performed have demonstrated that sample alignment is preserved throughout the L(α) to H(II) phase transition, thereby opening up possibilities for obtaining high-resolution data from non-lamellar phases
0.9 Static Magnetic Field and Temperature-Controlled Specimen Environment for Use with General-Purpose Optical Microscopes
We describe the addition of a simple, low-cost 0.9 T fixed magnetic field to a commercially available, variable-temperature sample environment suitable for optical microscopy. The magnetic field is achieved with the use of Fe-Nd-B rare-earth permanent magnets and steel yoke assembly, packaged into a Linkam Scientific Instruments model THMS600 heating and cooling stage. We demonstrate its effectiveness with examples of magnetic ordering of a lipid/water system doped with paramagnetic Tm3+ ions in the presence and absence of the applied magnetic field and at different temperatures.NRC publication: Ye
Tocopherol activity correlates with its location in a membrane: A new perspective on the antioxidant vitamin e
We show evidence of an antioxidant mechanism for vitamin E which correlates strongly with its physical location in a model lipid bilayer. These data address the overlooked problem of the physical distance between the vitamin's reducing hydrogen and lipid acyl chain radicals. Our combined data from neutron diffraction, NMR, and UV spectroscopy experiments all suggest that reduction of reactive oxygen species and lipid radicals occurs specifically at the membrane's hydrophobic-hydrophilic interface. The latter is possible when the acyl chain "snorkels" to the interface from the hydrocarbon matrix. Moreover, not all model lipids are equal in this regard, as indicated by the small differences in vitamin's location. The present result is a clear example of the importance of lipid diversity in controlling the dynamic structural properties of biological membranes. Importantly, our results suggest that measurements of aToc oxidation kinetics, and its products, should be revisited by taking into consideration the physical properties of the membrane in which the vitamin resides. \ua9 2013 American Chemical Society.Peer reviewed: YesNRC publication: Ye
Dimyristoyl phosphatidylcholine: A remarkable exception to \u3b1-tocopherol's membrane presence
Using data obtained from different physical techniques (i.e., neutron diffraction, NMR and UV spectroscopy), we present evidence which explains some of the conflicting and inexplicable data found in the literature regarding \u3b1-tocopherol's (aToc's) behavior in dimyristoyl phosphatidylcholine (di-14:0PC) bilayers. Without exception, the data point to aToc's active chromanol moiety residing deep in the hydrophobic core of di-14:0PC bilayers, a location that is in stark contrast to aToc's location in other PC bilayers. Our result is a clear example of the importance of lipid species diversity in biological membranes and importantly, it suggests that measurements of aToc's oxidation kinetics, and its associated byproducts observed in di-14:0PC bilayers, should be reexamined, this time taking into account its noncanonical location in this bilayer. \ua9 2013 American Chemical Society.Peer reviewed: YesNRC publication: Ye
Cholesterol in Bilayers with PUFA Chains: Doping with DMPC or POPC Results in Sterol Reorientation and Membrane-Domain Formation
Using neutron diffraction Harroun et al. [(2006) Biochemistry 45, 1227-1233; (2008) Biochemistry 47, 7090-7096] carried out studies that unequivocally demonstrated cholesterol preferentially sequestering in the middle of bilayers (i.e., flat orientation) made of lipids with polyunsaturated fatty acids (PUFA), in contrast to its "usual" position where its hydroxyl group locates near the lipid/water interface (i.e., upright orientation). Here we clearly show, using neutron diffraction, cholesterol's orientational preference in different lipid bilayers. For example, although it requires 50 mol % POPC (16:0-18:1 PC) in DAPC (di20:4 PC) bilayers to cause cholesterol to revert to its upright orientation, only 5 mol % DMPC (di14:0 PC) is needed to achieve the same effect. This result demonstrates not only cholesterol's affinity for saturated hydrocarbon chains, but also its aversion for PUFAs. Molecular dynamics (MD) simulations performed on similar systems show that in high PUFA content bilayers cholesterol is simultaneously capable of assuming different orientations within a bilayer. Although this result is known from previous MD studies by Marrink et al. [(2008) J. Am. Chem. Soc. 130, 10-11], it has yet to be confirmed experimentally. Importantly, MD simulations predict the formation of DMPC-rich domains, data corroborated by experiment (i.e., 10 mol % DMPC-doped DAPC bilayers), where cholesterol preferentially locates in its upright orientation, while in DMPC-depleted domains cholesterol is found mostly in the bilayer center (i.e., flat orientation). These results lend credence to DMPC's aversion for PUFAs, supporting the notion that domain formation is primarily driven by lipids